LART Research Client
Release 0.4.0

Florian Breit, Marco Tamburelli

Apr 01, 2023

2

CONTENTS

1 About the Research Client 3
1.1 Introduction L e e 3
1.2 What the ART Reserch Clientcando 3
1.3 Reasons touse the Research Client 4
1.4 Citingthe Research Client e e e e e e e e e 4
1.5 LACenSing o v i i e e e e e e e e e e e e e e 4
1.6 Contributors e e e e e 5
1.7 Acknowledgements e 5
User Guide 7
2.1 Compatibility and Requirements L e 7

2.1.1 0 Operating SyStemsS v v v v e e e e e e e e e e e e e e e e e e e 7
2.1.2 Systemrequir€ments i L e e e e e e e e e e e e e e e e 7
2.1.3 Required Software e e e e e e 8
2.1.4 Tested System Configurations o v i i i e e e e e 8
2.2 Installation e e e e 8
2.2.1 Imstalling on Windows 10/11 L 8
222 Installingon Linux e 13
223 Installingon MacOS 14
2.3 Getting started L L e e e e e e e e e e e e e e e e 15
2.4 Setting up data collection and obtaining consento e e 16
2.5 Collecting Responses e e 18
25.1 Userinputo e 18
2.6 Researchtask: LSBQe e e e e e 19
2.6.1 Loading a generic versionofthe LSBQe 20
2.6.2 Customizing a generic versionof the LSBQe 20
2.6.3 Excludable Questions e e e e e e e e e e e e e 22
2.7 Researchtask: ATOL L e e e e 32
2.7.1 Loading and customizing a generic versionof the AToL 34
2.8 Researchtask: AGT e 34
2.8.1 Loading recordings forthe AGT i e 35
2.8.2 Loading a generic versionof the AGT 37
2.8.3 Customizing a generic versionof the AGT 37
29 Locking and unlocking theapp e 38
2.10 Exportingdata e e e e 40
2.11 Discarding an attempt in PrOgresS v v v v v v v v e e e e e e e e e e e e e e e e 43
212 App Settings e e e e e e e e e e e e e e 45
2.12.1 General SEttings e e e e e e 46
2.12.2 Logging settings e e 46
2.12.3 Path and directory settings L. e e e 48

2.12.4 Tasksequencing e e e e e 49

3 Quick Tutorials 51
3.1 Localisation and Adding Translations 51
3.1.1 Creatingand Naming yourfile 51

3.1.2 Adding your translation L. L e e e 53

4 Developer Guide 57
4.1 Contributing o e e e e e e e e e e e e 57
4.1.1 WhatdoIneedtoknowtohelp? 57

4.1.2 HowdolImakeacontribution? 58

4.13 WherecanIgoforhelp? 59

414 Codeof Conduct 59

4.2 Setting up the development environment Lol e 59
4.2.1 Installing the pre-requirements it e e e e e e e e e 60

422 Getacopyofthesourcecode. i e e 62

4.2.3 Setup pipenv and install dependencies 0oL Lo 62

4.2.4 Running the app fromthesource 63

4.2.5 Bonus: Consider using a specialised source code editor 63

4.3 The manage.py utility L L e e e e e e e e e e e 64
4.4 Building from SoUrce L. oL e e e e e e e e e e e 64
4.4.1 Additional build dependencies Lo L o 64

4.4.2 Buildingtheappandtheinstaller 0oL 0oL, 65

4.4.3 Building the documentation e 65

444 Cleaning up after yourself e e e 66

445 Knownissues withbuilding L 66

45 Roadmap o L e e e e e e 66

5 API Documentation 69
5.1 Backend API (Python) e e 69
5.1.1 research_clientagt L e 69

5.1.2 research_client.app e 76

5.1.3 research_client.atolc e e 76

5.1.4 research_client.booteel L e e e e 83

5.1.5 research_client.conclusion e e e e e e 84

5.1.6 research_client.config L e 86

5.1.7 research_client.consent e e e e e e e e 92

5.1.8 research_client.datavalidator e 93

5.1.9 research_clientsbq 111

5.1.10 research_client.memorygame v v vt it e e e e e e e e e e e e e 116

5.1.11 research_client.settings ot i e e e e e e e e e e 120

5.1.12 research_client.utils L L L e 121

5.2 Frontend API (JavaScript) o e e e 122
52,1 Jartjs ..o e e e 122

5.22 booteeljs e e e e e e e e e e e 137

6 References 139
Bibliography 141
Python Module Index 143
Index 145

LART Research Client, Release 0.4.0

The LART Research Client is a freely available open-source app that aids researchers in the collection, storage and
transfer of data for research in bilingualism and language attitudes, especially in cases of bilinguals who speak a majority
language and a regional / minority / minoritized language. This documentation is for version 0.4.0.

Features
* Fieldwork-ready — use the included versions of the LSBQe, AToL, MGT, and digital informed consent forms,
or make your own versions.
* Reproducible — make your research reproducible by simply sharing version information.

* Extensible — contribute with JSON, Python, HTML and JavaScript or import the backend in your own Python
project.

* Free and open — dual-licensed under the AGPLv3 and the EUPL.

¢ Cross-platform — runs on Windows, MacOS, and Linux.
Citing

If you use the LART Research Client (or parts of it), please cite the following document:

Breit, F., Tamburelli, M., Gruffydd, I. and Brasca, L. (2022). The L'ART Research Client app: A digital
toolkit for bilingualism and language attitude research [Software, version 0.4.0]. Bangor University.

CONTENTS 1

https://www.gnu.org/licenses/agpl-3.0.en.html
https://commission.europa.eu/content/european-union-public-licence_en

LART Research Client, Release 0.4.0

2 CONTENTS

CHAPTER
ONE

ABOUT THE RESEARCH CLIENT

1.1 Introduction

The L’ART Research Client is a freely available open-source app to aid researchers in the collection, storage and transfer
of data for research in bilingualism and language attitudes, with a particular focus on bilingual populations who speak
a majority language and a regional / minority / minoritized language. The app aims to make research in bilingualism
easier, more comparable and reproduceable. For a detailed discussion of the specific methodological choices, see Breit
et al., 2023.

1.2 What the LART Reserch Client can do

The current version (L'ART Research Client 0.4.0) implements four tools (for a detailed discussion of methodological
adaptations, please see Breit et al., 2023).

* Participant consent: A digital informed consent process, including participant information sheets & consent
forms.

* LSBQe: A digital adaptation of the Language and Social Background Questionnaire, or LSBQ
[Anderson-Mak-EtAl-2018], which we term the LSBQe (“e” for electronic).

* AToL: A digital implementation of the Attitudes towards Languages Questionnaire or AToL
[Schoel-Roessel-EtAI-2013].

e MGT and VGT: A digital tool for measuring language attitudes via the speaker evaluation paradigm.
This tool enables users to run several evaluations of audio guises such as the Matched Guise Technique
[Lambert-Hodsgon-EtAl-1960] and the Verbal Guise test (e.g., [Markel-EtAl-1967]). Due to its flexibility as
either MGT or VGT, we named this tool ‘Audio Guise Test’, or AGT for short.

The main functionality of the LART Research Client resides in its format as a stand-alone app that can run on a large
variety of desktop and laptop computers without the need for internet connectivity. This makes it highly usable both in
lab environments and in the field, for example when collecting data in remote areas with inconsistent internet access.

The LART Research Client has been designed in such a way that it can be easily extended by researchers (or research
groups) with just a basic knowledge of Python, JavaScript and HTML needed to implement additional tasks (see the
Developer Guide for more info). Translating an existing task for a new language or language pair is even easier and can
be done by just editing a simple JSON file in a text editor (see tutorials/translating-tasks).

https://en.wikipedia.org/wiki/JSON

LART Research Client, Release 0.4.0

1.3

Reasons to use the Research Client

Less work for the researcher: With research tasks pre-implemented, preparation for a new study only involves
translation/localisation of the interface where a suitable one is not yet available for the target population. There
is also no need to manage forms and manually enter data after collecting responses.

Enhanced consistency and comparability within and across studies: The translation/localisation of tasks is
the only thing that varies within tasks. The presentation, data types and validation, coding, and output format
stay constant across different use instances, whether as part of the same study or across different studies and
research teams.

Improved transparency and reproducibility: Because the entire source code for the LART Research Client is
publicly available and version-controlled, it’s easy to reference the specific version and task that was used, which
allows other researchers to easily view and reconstruct the tasks exactly as they were administered at the time the
research was carried out.

For detailed examples and more concrete illustrations of these advantages, see Breit et al., 2023.

1.4

Citing the Research Client

Breit, F., Tamburelli, M., Gruffydd, 1. and Brasca, L. (2022). The L'ART Research Client app: A digital toolkit for
bilingualism and language attitude research [Software, version 0.4.0]. Bangor University.

1.5

Licensing

The LART Research Client and all the tools implemented within it are free and open source. The app is dual licensed
under the terms of the Affero General Public License (the AGPL) and the European Union Public License (the EUPL).
Dual licensing means that you are free to choose under which of the two license’s terms you want to use it.

Both licenses allow you to:

Use the app and its functionality freely (as in freedom) and for free (as in free beer) in your work, whether
commercial or non-commercial.

Modify or otherwise make adaptations to the app and its source code, as long as you yourself make those changes
available to others under the same license terms (or the terms of another compatible license where this is expressly
permitted by the AGPL or EUPL).

Allow you to add yourself to the credits/copyright notice when you modify the software, as long as you do not
remove, materially change, or misrepresent in any way the copyright and author attribution notes as they appear
in the app, its source code, documentation, distributions (e.g. installers), etc. This means that:

Naturally, if you intend on modifying and/or improving the Research Client, we would appreciate it if you would
share those developments with us so we can incorporate any improvements and enhancements into the official
version of the app.

Where possible we would also strongly encourage you to retain the dual licensing model, as we believe this
ensures maximal adoptability and reusability across a large variety of potential users in different parts of the
world.

Chapter 1. About the Research Client

https://www.gnu.org/licenses/agpl-3.0.en.html
https://commission.europa.eu/content/european-union-public-licence_en

LART Research Client, Release 0.4.0

1.6 Contributors

The LART Research Client core developers are Florian Breit (Lead) and Marco Tamburelli.
We would like to thank the following for contributing (in alphabetical order):

¢ Chloe Cheung (Documentation)

¢ Lissander Brasca (Translation, Documentation)

e Janto Gruffydd (User testing, Translation, Documentation)

* Athanasia Papastergiou (Translation)

1.7 Acknowledgements

The LART Research Client was developed by the Language Attitudes Research Team (GitHub) in the School of Arts,
Culture and Language at Bangor University. Development of the app was supported by the Economic and Social
Research Council [grant number ES/V016377/1].

1.6. Contributors 5

https://github.com/thatfloflo
https://github.com/dakrismeno
https://github.com/cwyc8
https://github.com/iantogruff
https://bangor.ac.uk/lart
https://github.com/lart-bangor
https://bangor.ac.uk/arts-culture-language
https://bangor.ac.uk/arts-culture-language
https://bangor.ac.uk
https://ukri.org/councils/esrc/
https://ukri.org/councils/esrc/
https://gtr.ukri.org/projects?ref=ES%2FV016377%2F1

LART Research Client, Release 0.4.0

6 Chapter 1. About the Research Client

CHAPTER
TWO

USER GUIDE

The ART Research Client User Guide covers everything you need to know to install the Research Client, set it up and
begin data collection.

For users who wish to customise any of the tasks or add new translations, there are Quick Tutorials to help you through
the process. For developers who may want to contrribute further developments to the Research Client or build additional
tasks, a technical documentation can be found in the Developer Guide.

2.1 Compatibility and Requirements

2.1.1 Operating systems
The L’ART Research Client has been developed and tested primarily on Windows 10 and 11 (64-bit Intel and AMD
architectures).

The installer and app will probably also work on 64-bit versions of Windows 8, but we do not officially support this.
The app is in principle compatible with current versions of MacOS, Linux, and BSD, but this currently requires instal-
lation/building from source (see Developer’s Guide).

We have plans to officially support these platforms with the version 1.0 stable release in the near future.

2.1.2 System requirements

Minimal requirements:
* 64-bit Intel, AMD, or otherwise x64 compatible processor, 2.4GHz.
* 65MB free disk space.
* 4GB RAM.
Recommended requirements:
e 64-bit Intel or AMD processor, 3.0GHz dual-core.
* 200MB free disk space.
* 8GB RAM.

file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/developers/index.html

LART Research Client, Release 0.4.0

2.1.3 Required Software

You must have a current version of the Google Chrome browser installed. The L’ART Research Client relies on this to
provide its User Interface.

2.1.4 Tested System Configurations

We have successfully tested the app on the following systems:

Manufacturer | Model Processor RAM | Operating System
Dell Inspiron 7620 2-in-1 | Intel i7-1260P 16GB | Windows 11 64-bit
Dell Latitude 5520 Intel i7-1165G7 | 16GB | Windows 11 64-bit
Dell Latitude 5520 Intel i7-1165G7 | 16GB | Windows 10 64-bit
Dell XPS 9520 Intel i7-9750H 16GB | Windows 10 64-bit
Lenovo ThinkPad 8GB Windows 10 64-bit

2.2 Installation

2.2.1 Installing on Windows 10/11

1. Download the official Windows installer for the ART Research Client on Windows.
You can find the latest release (as well as earlier versions) at github.com/lart-bangor/research-client/releases.

2. Once downloaded to your device, open the Downloads dialogue in the browser and click Open file. Alternatively,
navigate to your Downloads folder in File Explorer and double click on the installer file.

Downloads

LART Research Chent v0.3.1-winb4.exe

8 |

Fig. 2.1: Open file from downloads

Note: If you have Microsoft Defender active, you may be warned about running an unrecognised app.

This is expected behaviour for unsigned software downloaded from the internet. It is meant to get you to check
that you’ve downnloaded the Software from a reputable source before running it.

This is fine if you've used our official download link above!

Click Run anyway to continue with the installation.

8 Chapter 2. User Guide

https://www.google.co.uk/chrome/
https://github.com/lart-bangor/research-client/releases

LART Research Client, Release 0.4.0

Windows protected your PC
nder SmartScreen pr ed an unrecognized app from
unning this app might pu

App: LART Research Client v(

Publisher: Unknown publisher

o

Fig. 2.2: Microsoft Defender SmartScreen

. Select you preferred install mode.

We recommend choosing Install for me only for most use cases, which will install the app only for the current
user.

However, you may wish to install the app for all users. For example, if you’re installing on a shared university or
lab computer and want to centrally manage the installation for all users (requires administrator privileges).

If in any doubt, choose Install for me only.

. Click Yes to allow UART Research Client to make changes to your device (namely, to install the app).

. Read and accept the licence agreement.

You must accept the agreement before installation can begin.

. Select the destination location for your app.

Normally you should be able to leave this at the path already suggested by the installer, which will be the default
directory for app installation for your system and the chosen installation mode.

Make sure you have at least 65MB of free disk space on your device.

Click Browse. .. if you wish to change the installation path of the app.

. Click Install to install the ART Research Client app on your device.

. Complete setup by clicking Finish and enjoy!

2.2,

Installation 9

LART Research Client, Release 0.4.0

Select Setup Install Mode X

[b Select install mode

LART Research Client can be installed for you only, or
for all users (requires administrative privileges).

—> Install for me only (recommended)

@ Install for all users

Cancel

Fig. 2.3: Install mode setup

User Account Control X

Do you want to allow this app from an
unknown publisher to make changes to your
device?

LART Research Client v0.3.1-win64.exe

Publisher: Unknown
File origin: Hard drive on this computer

Show more details

Yes No

Fig. 2.4: User account control screen

10 Chapter 2.

User Guide

LART Research Client, Release 0.4.0

| Setup - LART Research Client 0.3.1 - x
. o

License Agreement |'I \

Please read the following important information before continuing. \ _'
—"
Please read the following License Agreement. You must accept the terms of this agreement before
continuing with the installation.
GNU LESSER GENERAL PUBLIC LICENSE ~
Version 3, 29 June 2007
Copyright (C) 2007 Free Software F 1, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not alloweed.
This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.
0. Additional Definitions.
As used herein, "this License” refers to version 3 of the GNU Lesser
General Fublic License, and the "GNU GFL" refers to version 3 of the GNU ¥
Ranaral Puhlic |iransa
@ I accept the agreement
() 1do not accept the agreement
Cancel
Fig. 2.5: License agreement
| Setup - LART Research Client 0.3.1 - *

Select Destination Location 1
Where should LART Research Client be installed? |

f Setup will install LART Research Client inte the following folder.

To continue, click Next. If you would like to select a different folder, click Browse.

Browse...

Fig. 2.6: Select destination location

2.2,

Installation

11

LART Research Client, Release 0.4.0

|b [ART Researt

~
Ready to Install \.
Setup is now ready to begin installing LART Research Client on your computer. |

. .

Click Install to continue with the installation, or dick Back if you want to review or change any settings.

Destination location:
C:\Program Files (x86)\LART\Research Client

Additional tasks:
Additional shortcuts:
Create a desktop shortcut

==

Fig. 2.7: Install Research Client app

119 Setup - LART Research Client 0.3.1 -

Completing the LART Research Client
Setup Wizard

Setup has finished installing LART Research Client on your computer, The
application may be launched by selecting the installed shortcuts.

Click Finish to exit Setup.

Launch Research Client

Fig. 2.8: Complete setup of Research Client app

12 Chapter 2. User Guide

LART Research Client, Release 0.4.0

2.2.2 Installing on Linux

This currently requires building from source or running as a Python package (requires Python 3.10), but should run if
you have Chrome or Chromium installed.

Note: Help wanted!

We would welcome help for developing a sustainable workflow to build distributables for Linux. If you have any
experience with packaging for one or more Linux distributions (e.g. as flatpaks, *.debs, snaps, etc.) and would be
willing to help with that please do get in touch!

Running as a Python package

The easiest way is to run directly from source. On Ubuntu 22.04, follow the steps below the get the source code and all
the dependencies installed. The last line will run the Research Client.

sudo apt install chromium-browser python3-pip python3-tk -y

python3.10 -m pip install pipenv

cd ~/

wget https://github.com/lart-bangor/research-client/archive/refs/tags/v0.4.0.tar.gz
tar -xf ./v0.4.0.tar.gz

rm ./v0.4.0.tar.gz

cd research-client-0.4.0

python3.10 -m pipenv install

python3.10 -m pipenv run python ./manage.py run

If you want to make an executable shortcut, create a file with the executable flag (+x) in your ~/.1local/bin directory.
You can do this by following these steps:

$ cd ~/.local/bin

$ echo > research-client

$ chmod +x research-client
$ gedit research-client

In the editor that pops up, enter the following text and then save the file:
#!/usr/bin/env bash

cd ~/research-client-0.4.0

python3.10 -m pipenv run python manage.py

After saving the above, you can now launch the Research Client from the terminal by just typing in research-client
and hitting Enter. (You may need to log out and log back in if this doesn’t work straight away. . .)

2.2. Installation 13

LART Research Client, Release 0.4.0

Building from source

Alternatively, if you want to build the app properly for your system, you can follow the steps for Setting up the develop-
ment environment from the Developer Guide, and then just run python3.10 -m pipenv run python manage.py
build from inside the project’s root directory.

This will produce a tarball (*.tar.gz) in the ./dist/linux/ directory containing the full set of binaries for the
application, which can then be installed in the appropriate way for you system or run directly from the executable
therein.

The only real advantage this might offer is if you want to install the Research Client on several machines, as you can
just copy over the tarball, exctract it and run the app, without needing to worry about any dependencies (they are all
packaged together when the executable is built). There is no real additional advantage over running as a Python package.

2.2.3 Installing on MacOS

This currently requires building from source or running as a Python package (requires Python 3.10), but should run if
you have Chrome or Chromium installed.

Caution: App termination issue on MacOS

There is currently an issue where the app may not terminate correctly on MacOS after the main window has been
closed. If the background Terminal window remains open after a few seconds, this may have to be closed manually
and the user may have to confirm that they want to really terminate the process.

This is not harmful beyond the annoyance value, as long as the user does not close the Terminal window before they
have finished the data collection.

For more information see #37.

To build from source follow the same instructions as for Linux above, with some adjustments necessary (such as using
port instead of apt). Since we don’t currently have full instructions that have been tested on MacOS for this, it will be
preferable to run as a Python package unless you want to actively figure out any problems you might encounter during
the build.

To run as a Python package, follow these instructions:
1. Install Chrome from the app store (or install Chromium using your preferred method).

2. Install the latest version of Python 3.10x (that is version 3.10.10 as of the time of writing not 3.11.x!) from the
official Python releases for MacOS.

After runnin the installer, open a Terminal and check that python3 --version prints something like “Python
3.10.10”. This means python has installed correctly and you’re ready to continue.

3. Install pipenv with the command pip3 install pipenv. This should print out a success message at the end
of the process. You can ignore any messages it might print about updating pip itself (or follow the instructions it
provides if you like).

4. Now run the following commands in your terminal to set up the package from source:

cd ~

curl -L https://github.com/lart-bangor/research-client/archive/refs/tags/v0.4.0.tar.
gz -0 research-client.tar.gz

tar -xf ./research-client.tar.gz

rm research-client.tar.gz

mv research-client-0.4.0 research-client

cd research-client

14 Chapter 2. User Guide

https://github.com/lart-bangor/research-client/issues/37
https://www.python.org/downloads/macos/
https://www.python.org/downloads/macos/

LART Research Client, Release 0.4.0

python3 -m pipenv install

5. You can now launch the app from within a terminal, provided you are in the directory ~/research-client,
using the following command:

python3 -m pipenv run python3 ./manage.py run

Obviously, you will not want to open a Terminal, do cd ~/research/client and then type python3 -m pipenv
run python3 ./manage.py run every time. You can create a shortcut which can be clicked to launch the app by
following these additional steps:

1. Make an executable .command file inside the ~/research-client directory by running the following in a
Terminal:

cd ~/research-client

echo > research-client.command

chmod +x ./research-client.command

open -a TextEdit ./research-client.command

2. In the editor that popped up with the last command above, copy and paste the following code, then save and close
the file.

#!/usr/bin/env bash

cd ~/research-client
python3 -m pipenv run python3 ./manage.py run

3. Once you’ve created the research-client.command file as per the two steps above, you can just locate it in
Finder (e.g. launch Finder, then in the top click on Go -> Home, and open the research-client folder) and
then drag and drop the research-client.command onto your dock.

When you click on the file in the dock now, it should launch a Terminal window together with the app.

2.3 Getting started

Upon starting the app on your device, both the [’ART Research Client app and a terminal window will open.
Figure XX - UART Research Client home screen

The terminal window prints out information that might be helpful with troubleshooting and should not be closed (the
app will freeze/become unresponsive if the terminal window is closed).

When you close the app, the terminal will also close automatically.
However, if you close the terminal, the main app window will not close automatically.

On the app home screen, you will see the list of available tasks in the centre of your app, and a side menu containing
several options, some of which are context-dependent. For example, the side menu contains options for Discarding
Attempts, Collecting Consent, Unlocking the App, Exporting Data, App Settings and a dialogue providing information
about the app.

These options are described in the linked sub-sections of the documentation.

2.3. Getting started 15

file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/users/discarding-attempts.html
file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/users/discarding-attempts.html
file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/users/data-setup.html
file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/users/locking-app.html
file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/users/exporting-data.html
file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/users/configuration.html

LART Research Client, Release 0.4.0

LART Research Client — [m] X

Fig. 2.9: LART Research Client Terminal

2.4 Setting up data collection and obtaining consent

There are two possible paths available to the researcher to collect data with the UART Research Client. Your preference
will depend on how you wish to obtain informed consent from your participants.

Should you wish to obtain your participants’ consent on paper for any reason (e.g., you require your participant’s
signature, or you prefer to work with physical copies of ethics-related documentation) then you will start data collection
by clicking directly on the research tool you require under Choose a task on the app’s home screen.

In the current version (0.4.0), the tasks available are: LSBQe, AToL, AGT, and Memory Game.

The second option offers the researcher an integrated digital avenue to obtain informed consent, which negates the need
to handle physical information sheets, consent forms and signatures.

This can be done by using the generic consent form provided (see Figures 16 & 17 below) or by linking it to your own
digital consent form.

To obtain consent digitally, open the side menu on the top left-handby clicking on the “burger menu” icon. Then click
on Informed Consent.

After selecting the required language version and entering a unique participant ID, your study’s consent form, infor-
mation sheet and eligibility criteria will appear below.

If the participant gives their consent and confirms their eligibility through marking their respective boxes, they will be
automatically advanced to the start screen for the first task (see Task Sequencing on how to set this).

The task start screen is the same start screen that researchers who opt for the LSBQe without digital informed consent
will see after they select a task from the app’s home screen.

16 Chapter 2. User Guide

file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/users/configuration.html#task-sequencing

LART Research Client, Release 0.4.0

LART Research Client

=3 Informed Consent

(] Export data
& Unlock app
{5 Settings

(@) About

Fig. 2.10: The side menu of the LART app

Participant Consent

Select language version:

Welsh — English (United Kingdom)

Participant ID:
257894921

Enter the participant’s pre-assigned ID.

Select which consent form you wish to use:

Generic consent form ~

|
Generic consent form

START

Fig. 2.11: Participant consent start screen

2.4. Setting up data collection and obtaining consent 17

LART Research Client, Release 0.4.0

2.5 Collecting Responses

Upon starting the LSBQe, you are first asked to enter the relevant information for your study. These are:

1. Which version of the LSBQe you require, i.e. what localisation is pertinent to your study, which determines
factors such as the primary (and possibly secondary) language displayed during the LSBQe, the suggested list of
alternative languages, and the education level indicators.

A researcher ID, e.g., the name of the researcher conducting your experiment.
The location, i.e., the area, city, or town where the research is being undertaken.

A participant ID, i.e., the unique pre-assigned ID for your participant.

A

Consent confirmation, i.e. whether the participant has given their consent (either digitally or on paper).

Note: If you have collected consent via the digital consent form in-app, the app will pre-populate the information on
this page using the information entered previously on the informed consent form.

E LSBQ-RML

Language and Social Background Questionnaire (RML)

h (United Kingdom)

Participant ID:

CRPO34

i has given informed consent.

START

2.5.1 User input

While all tasks within the L'ART Research Client can be completed with a touch interface or keyboard-only input, we
strongly recommend that users are provided with access to both a keyboard and a pointing device (e.g. a mouse or
trackpad).

This ensures the best user experience and the sliders used to collect continuous data are more accurate when used with
a pointing device rather than a keyboard.

A significant portion of the tasks available on the I’ART Research Client make use of sliders. Sliders are displayed
in a lighter shade with their indicator displayed in the middle by default, and they must be moved at least once for the
answer to be valid.

Once moved, the slider will turn a darker shade of blue to show that the slider is active and has been moved by the
participant.

Should the participant want to keep the slider in the middle of the bar, the slider will need to be moved once and then
moved back to the middle point of the bar.

If the participant fails to move the slider, a red flag will appear (see Figure 19) and the participant will not be able to
advance

18 Chapter 2. User Guide

LART Research Client, Release 0.4.0

Note: Some sliders provide a ‘“not applicable” tickbox, which negates the need for the user to interact with that slider.

Community Language Use Behaviour

Please indicate which language or dialect you most frequently heard or used in the following life stages, both inside and outside home
Only English Half/Half Only Welsh
Infancy ®
MNursery age ®
Primary age []
Secondary age []

Please indicate which language or dialect you generally use when speaking to the following people.

Only English Half/Half Only Welsh

Parents
Children
Siblings
Grandparents

Other relatives

Fig. 2.12: The slider function, using the LSBQe as an example.

2.6 Research task: LSBQe

In the LSBQe, the task start screen is followed by the three main sections of the LSBQe on Language and Social
Background, Language and Dialect Background, and Community Language Use Behaviour respectively.

For more details on the contents of the LSBQe and how this differs from the standard version of the LSBQ, see Breit
et al. (2023) [INSERT LINK].

Any mandatory fields that haven’t been completed by the participant will be flagged up if the user attempts to continue
to the next page without having fully completed any section of the LSBQe or the response entered in a field is invalid
(e.g. text entered in a field expecting a date).

The user is given instructions on how they should complete the missing fields if this happens.

For researchers using the app, or a specific localisation of the LSBQe for the first time, it might be useful to complete the
LSBQe and purposely leave all fields blank before trying to submit so they can read through and familiarise themselves
with the user-feedback provided for each field.

2.6. Research task: LSBQe 19

LART Research Client, Release 0.4.0

Language and Social Background Questionnaire (RML)

Language and Social Background

Fig. 2.13: Mandatory fields that remain unanswered or contain invalid input will be flagged in red

2.6.1 Loading a generic version of the LSBQe

An “English — generic” version of the LSBQe is available for you to use if the languages pertinent to your research
location are not available amongst our four LSBQe versions, or if you prefer a generic or customisable version of the
LSBQe.

To select the generic version of the LSBQe, choose “English-generic (United Kingdom)” from the LSBQe version drop
down list.

This version of the LSBQe will give you English and “Other Language” at every juncture where both languages are
named.

2.6.2 Customizing a generic version of the LSBQe

You may wish to customize a generic version of the LSBQe if you would like the LSBQe to present a specific language
pair to use during your study.

In order to customize a version of the LSBQe, open the file [EngZzz_Eng_GB] by following the path below:
C:UsersusernameAppDataLocalProgramsLARTResearchClientlart_research_clientlsbgversions

Firstly, you must “save as”, following the ISO standard code sequence (see the note here for standard code sequence
generating) (see Figure 22).

For example, if you wish to customize a version for English and Irish for use in Ireland through the medium of English,
you will create a file called [EngGle_Eng_IE] (see Figure 23).

After your new version is saved, you must change the “versionID” and “versionName” to reflect your customization.
Your “versionID” should match your file name.

A further customization that you can make inside the file relates to how your LSBQe version will refer to the language
you wish to include.

20 Chapter 2. User Guide

file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/tutorials/localisation-translations.html#id5

LART Research Client, Release 0.4.0

Language and Social Background Questionnaire

Select LSBO, version:

English - generic (United Kingdom)

Researcher ID:
Kenneth
the ressarcher's name or |
Location:
Bangor
the location (e.. town name) where the researc
Participant ID:
R345M
Canfirm consent:
8 1 confirm that the participant has given informed consent.
START
Fig. 2.14: Loading a generic version of the LSBQe
Marme : Date modified Trpe Size
&l CymEng_Cym_G8 json & EngZzz £ ’ o
«ll CymEng Eng_GEB,json File Edit Format View Help
<) EllEng_EI_GR.json 1 @ saveas x
| EngZz Eng GB.json |
< GswGer_Ger DEjson 4 <« Research Client » research_client » lsbg » versions -] Search
) Lnotta_fta_IT json
) LzGer Ger BE json Organize = Newfolder i .
" Hame - Dhate modified
Quick access .
4 C . 023 13:32
o ey - sméng Cym, 68 json 2023 13
&) CymEng_Eng GBjson 2023 13:3
¥ Downloads &) EllEng_EN_GR.json
= Documents | EngZzz_Eng_GB.json
&l Pictures) GevtGer_Ger_DE.json
Ethics & Lmoita_ta_ITjson
Language Attt <l UzGer_Ger BEjson
Personal Work
Sereenshots
P S v
File name: EngGle_Eng_|Ejson -
Saveastype A Fles (-9 =
~ Hide Folders Encading: UTF-8 v Saue Cancel
TeRE "

Ln1, Col1 100% Windows (CALF) UTF-8

Fig. 2.15: Save the generic files as and follow the ISO code sequence

2.6. Research task: LSBQe 21

LART Research Client, Release 0.4.0

) CymEng_Cyrm_GBjsen 7 EngGle_Eng_IEjson - Notepad - O x
| CymEng_Eng_G8,son
) EllEng_EIl_GRjson

| EngGle Eng_IEson

File Edit Format View Help
{ Y
"meta": {
“versionId": “EngGle_Eng_TE",
“versionName": “English - Irish (Ireland)",
“versionNumber”: "8.3.5",
“author™: "Marco Tamburelli <m.tamburelli@bangor.ac.uk>"|,
“date": "2823-83-86",
"options": {
"lsh_show_other_sex": true,
"1db_minimum_required_languages": 2,

| EngZzz_Eng GBjson
| GowGer_Ger_DEjson
) Lmolta_lta_Tjsen

) LtzGer_Ger BE json

"1db_show_reading”: true,
“1ldb_show writing™: true,
“club_show_codeswitching™: true

}
)
"bage": {
“appTitle”: |
“Language and Social Background Questionnaire”

Lné, Col 85 100% Windews (CRLF) UTF-8

Fig. 2.16: New LSBQe file EngGle_Eng_IR

To do this, you must search for “RML” in your [EngGle_Eng IE] and change “the other language” to the language
name you wish to be displayed. In our current example that would be ““Irish’ as shown in Figure 24 below.

It is not mandatory to include English as one of the languages on your LSBQe version. For example, if you require
an LSBQe version to study Ulster Scots and Irish in Northern Ireland, you would call the file [ScoGle_Eng_GB] and
apply the relevant changes in Figure 22 and Figure 23.

Additionally, in order to change the default “English” in the LSBQe, you would have to search “MajorityLanguage”
and change each instance of “English” to “Ulster Scots” (see Figure 25)

Note: Note that the third label in the file name [ScoGle_Eng_GB] remains “Eng”, as this refers to the language in
which the LSBQe is presented, which in this case is still English.

See here for details on file naming and ISO codes.

2.6.3 Excludable Questions

The LSBQe allows users to include or exclude certain questions depending on the nature of the language communities
to be researched (see Breit et al. 2023 for details on the rationale behind these choices).

Below you’ll find instructions on which questions allow this option and how to go about excluding them.

22 Chapter 2. User Guide

file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/tutorials/localisation-translations.html

LART Research Client, Release 0.4.0

3 “EngGle_Eng_IE.json - Notepad

File Edit Format View Help
“Punjabi”,
"Hindustani”,
“Bengali”,
"Gujarati”,
"Tamil",
“Scottish Gaelic”,
"Mandarin”

Find Next

Direction Cancel

[Match case Olp ®Down
] Weap around
“Irish Sign Language",
“"Modern Standard Arabic”,
"Persian”,
“Maghrebi Arabic (Darija)”,
"Romanian”,
"Tagalog"”,
“Guernésiais®”,
"lerriais”,
“Manx Gaelic”
]J
"repeatedlLanguageErrorTitle”: [
“Repeated language”

]

“repeatedlanguageErrorMessage”: [
"“¢span class=\"languageNameSlot\">[languageName]” has already been added to this list."

1
})
"club™: {
"secTitle™: [
“Community Language Use Behaviour®

1,

“onlyRML": [
"Only [RML]",
"Only Irish”

])

"onlyMajoritylLanguage”: [
"Only [MajoritylLanguage]”,
“Only English”

Fig. 2.17: Customizing inside your LSBQe file.

23

2.6. Research task: LSBQe

LART Research Client, Release 0.4.0

7| *ScoGle_Eng_GB.json - Notepad

File Edit Format View Help
"Mandarin”,
"Portuguese”,
"Welsh”,
"Scots",
"Italian™,
"Ulster Scots”,
"Turkish™,

Find what: [[MsjortyLanguage] | | End Next
Direction Cancel

Dmm OQ’ @g""\‘"

[Wrap around
"Jeérriais”,
"Manx Gaelic”
1.
"repeatedLanguageErrorTitle": [
“Repeated language"
1,

"repeatedLanguageErrorMessage”: [
"“¢span class=\"languageNameSlot\">[languageName]” has already been added to this list.”

club™: {
“secTitle™: [
"Community Language Use Behaviour"

»

"onlyRML": [
"only [RML]",
"Only Irish”

]

nlyMajoritylLanguage™: [
"Only [MajoritylLanguage]”,
"Only Ulster Scots”

1,

Fig. 2.18: Customizing both languages in your generic LSBQe file

24 Chapter 2. User Guide

LART Research Client, Release 0.4.0

“Other” Sex

As default, the LSBQe contains three options that a participant may select as their sex: “Female”; “Male”; “Other”.

Language and Social Background

Fig. 2.19: Default options for sex on LSBQe

However, some researchers may prefer to use a binary choice (e.g., where biological sex is a research variable) and
therefore exclude “Other” from the available options.

To do this, open your LSBQe version file from the following path:

C:\Users\username\AppData\Local\Programs\LART\ResearchClient\lart_research_client\1lsbhqg\
versions

With the file open, you will see that below the section “options” the line labelled “1sb_show_other_sex”"

is set to
true:

) CymEng_Cym_GBLjson N File

) LizGoer Ges BEjon

base":
“appTitle™: [
“Language and Social Background Questionnaire”

Ln3, Col 38 100% Windows (CRLF) UTF-8.

Fig. 2.20: The feature “Isb_show_other_sex” set to “true”

To exclude the “Other” option in your version of the LSBQe you simply need to set that option to “false”.

Note: Make sure to restart the app so that the change can take effect.

If you wish to change it back to including *““Other”’, you must reverse the above procedure and change the setting back
to "true".

2.6. Research task: LSBQe 25

LART Research Client, Release 0.4.0

Logging settings

Configures the app's debug and error logging

Maximum number of log files to keep:

Default log level

[ult log app start. no log leve d with the --debug [LEVEL
Console log message format:
er {levelname

File log message format

Fig. 2.21: The feature “Isb_show_other_sex” has been changed to “false”

Language and Social Background

Fig. 2.22: How the question appears in the app after removing “Other”

Minimum required languages

In the “Language and Dialect Background” section, the opening question asks participants to list all the languages and
dialects that they speak and give information regarding where they learned each of them, when they learned them, and
if there were significant periods where the participant did not use any of them.

By default, the LSBQe requires a minimum of two required language names, by presenting participants with two blank
lines that must be filled before continuing.

While participants have the option of adding more language varieties via the Add Line button (i.e. for participants who
are multilingual), only two lines will appear as default (see Figure 30 below).

Language and Dialect Background

List all the languages and dialects you can speak and understand, including Welsh and English, in order of how comfortable you feel using them:

Fig. 2.23: The opening question on the Language and Dialect Background section set to two minimum required lan-
guages

Should you wish to make three or more languages the default without having to add more lines, for instance if you're
researching trilingualism within a community, you may set the minimum required languages to three.

To do this, firstly, open your LSBQe version file from the following path:

26 Chapter 2. User Guide

LART Research Client, Release 0.4.0

C:\Users\username\AppData\Local\Programs\LART\ResearchClient\lart_research_client\1lsbhqg\

versions

With the file open, you will see that below the section “options”
“ldb_minimum_required_languages” is set to “2”:

Cyming_ng GBjson - Notepad o ox

File Edt Format View Help

1
1
1
! “meta”: {
134 "versionld": "CymEng_Eng_GB" |
| “verslonllame™: "Welsh - English (United Kingdom)",
, “versionliunber”: "8.3.5",

“author”: "Florian Breit <f.breit@bangor.ac.uk>, lanto Gruffydd <ianto.gruffydd

"date": "2023-03-86

“options™: {
Lsb_show_other_sex": true,
"1db_nininum_re 1
"1db_show_readi
“1db_show_writi e,
"club_show_codeswitching™: true

}

“base™: {
“appTitle”
“Language and Social Background Questionnaire”
1,
yes™i [
“Yes®
]

“no™: [
No*

“next™: [
“Next"

Ln3,Col38 100% Windows (CRLE) UTF-8

Fig. 2.24: The feature “ldb_minimum_required_languages” set to “2”

To change this to a different number, e.g., 3, you simply type “3” in place of “2”:

3 Cymeng Cym_GB.json
<] CymEng Eng GBjson

7 *CymEng Eng_GBjson - Notepad - 0 %

Fle B3t Format View Help

) EngGle,Eng[Ejson 13/03/202312:03 " "meta™: {
- v “versionTd®:

CynEng_Eng_G8",
"varsionflane”: “Welsh - English (United Kingdom)",
“versionllunber”: "8.3.5",

lorlan Breit <f.breltibangor.ac.uk>, Tanto Gruffydd <lanto.gruffydd
3-93-86",

“eptions”: {
*1sb_show_other_sex": true
“1do_mininun_required_languages”: 3|,
*1db_show_reading”: true,
~1db_show_uriting”: true
*club_show_codeswitching”: true

)

b
“base”: {
“appTitle”:

*Language and Social Background Questionnaire”

“yesi
L
1

"no™: [
i

“next: [
“Next™

Ln 10, Col 48 100% Windows (CRLF) | UTF-2

Fig. 2.25: Changing the minimum required languages to three

the

line

labelled

Note: Make sure to restart the app so that the change can take effect.

If you wish to change the option back to two languages, you must reverse the above procedure and change the setting

back to “2”.

2.6. Research task: LSBQe

27

LART Research Client, Release 0.4.0

Language and Dialect Background

Fig. 2.26: How the question appears in the app with a minimum of three required languages

Reading and Writing:

In the “Language and Dialect Background” section, participants are asked how much time they spend engaged in
speaking, listening, reading, and writing in each of their languages.

About Welsh

Fig. 2.27: How the question appears in the app with “Reading” and “Writing” options

The “reading” and “writing” parts of the questions can be removed. For example when researching a community whose
one or more languages is only/mostly oral or doesn’t have an accepted orthographic system, making the “reading” and
“writing” options irrelevant to participants.

To remove the “reading” and “writing” options, firstly, open your LSBQe version file from the following path:

C:\Users\username\AppData\Local\Programs\LART\ResearchClient\lart_research_client\1lsbq\
versions

With the file open, you will see that below the section “options” the lines labelled “ldb_show_reading” and
“ldb_show_writing” are set to “true” :

To exclude these options from your version of the LSBQe, simply change the values to “false”:

Note: Make sure to restart the app so that the change can take effect.

If you wish to change it back to including “reading” and “writing”, you must reverse the process and change the values
back to “false”.

28 Chapter 2. User Guide

LART Research Client, Release 0.4.0

Name Dote mod

4 Cymeng Cym 6B json

< Cyméng Eng GB jron /0172023 1428

< Eleng_E).GR json
4 Englz_Eng OB jpon
) Gruier Ger_DE jran
) tmolta_ta [T jsan
) LizGor_Ger_BE json

Fig. 2.28: The features “ldb_show_reading” and “ldb_show_writing” are set to “true” by default

Name Date modied

1 Cymng Cym 8 o 10108

1 Cyméng Eng 58 jon 160372023 1047

) BlEng 1 GRjson 1
) EngGe Eng [Ejson 1
) Englz Eng B json i
4 Gsweer_Ger Ok json i
4 Lmoka_ta ITjsom I
30 Liztier Ger BE jon [
) Scodile ng GBjsan 1

Wpe e
1 CymEng.Eng. GBjson - Notepsd - D x

File Edit Fomat View Help

“neta™: {
"versionld": "CymEng_Eng GB"|
"verslonName”: "Welsh - English (United Kingdom)",
“versionhunber”: "9.3.5",
“author®: "Florian Breit <f .breit@bangor.ac.uk>, Lanto Gruffydd clanto,gruffydd
“date”: "2023-03-06",
“options”: {
“1sb_show_other_sex”: true,
~1db_nininun_required_languages™: 2,
1db_show_reading”: trus,
“1db_show_writing”: true,
" club_show_codeswitching™: true

}

applitle”: [

“Language and Soclal Background Questlonnalre”

fyest: [
“Yes”

no": [
_o*

next”: [

“Next"

tn3, Col38 0% Windows (CRLF) UTF-8

Tyee saz
) Cymeng_Eng_GBjson - Notepod - B X
Fie Edt Fomst View Help

“meta”: {
“versionId”: “Cynéng_Eng GE",
“versionllame”: "Welsh — English (United Kingdom)”,
“versionkumber™: "0.3.57,
“author”: “Florian Breit <f.breit@bangor.ac.uk>, lanto Gruffydd <ianto.gruffydd
“date”: "2023-03.06",
“options”:
“1sb_show_other_sex": true,
“1db_minimn_required_languoges™: 3,
“1db_show_reading”: false,
“1db_show_writing”: false,
"club_show_codeswitching”: true
}
1s
“base™s {
“appTitle"s
"Language and Social Background Questionnaire”
"yes: [
“Yes™
1,
no": [
e
1,
next™: [
“Next”
Ln1,colt W0% Windous (CRLF) UTFG

Fig. 2.29: Setting the “reading” and “writing” options to “false”

About English

Relative to the performance of a highly proficient speaker of

Proficienc,

Speaking

Understanding

Of the time you spend engaged in each of the fellowing activities, how much of that time is carried out in

Speaking

Listening

About Scots

Relative to the performance of a highly pr

Ne Profic

Speaking

Understanding

Of the time you spend engaged in each of the following activities, how much of that time is carried out in Se

Nene of the time

Speaking

Listening

Fig. 2.30: How the question appears in the app with “Reading” and “Writing” options removed

. rate your proficiency fevel for the following activities cond

nt speaker of Scots, rate your proficiency level for the following activities cos

All of the time

ucted in Scots.

All of the time

2.6. Research task: LSBQe

LART Research Client, Release 0.4.0

Show code-switching

The LSBQe’s Community Language Use Behaviour section contains a final section on code-switching where partici-
pants are asked how often they code-switch in different contexts (see Figure 38).

Please indicate which language o calect you generally use for the following activities.
Only English HalffHalt Only Welsh

Reading

Emailing

Texting o

Social media

Some people switch bet rsation. For example, while speaking in one language they may use sentences or words from the

other language. Thi n you engage in code-switching

None of the time All of the time

With friends

On social media

Fig. 2.31: CLUB section with code-switching question included

The code-switching question can be removed if this information is not required in your study.
To remove the code-switching question, firstly, open your LSBQe version file from the following path:

C:\Users\username\AppData\Local\Programs\LART\ResearchClient\lart_research_client\1lsbq\
versions

With the file open, you will see that below the section “options” the line labelled “club_show_codeswitching”"
is set to “true” (see Figure 39)

": “CymEng_Eng_G8",
felsh - English (United Kingdom)",

ro: "9.3.5%,
orian Breit <f.breitghangor.ac.uk>, Tanta Gruffydd <ianto.gruffydd
2023-03-06",

Show_other_sex™: true,

g": fals
“club_show_codesuitching™: true

uage and Social Background Questionnaire

In3 Col38 1005 Windows (CRLF) UTF-8

Fig. 2.32: The feature “club_show_codeswitching” is set to “true” by default

To exclude the code-switching question from your version of the LSBQe, simply change the value to “false” (see
Figure 40)

30 Chapter 2. User Guide

LART Research Client, Release 0.4.0

<) CymEng_Cym_GE.jsen 1; | CymEng Eng GEjson - Notepad - o X
<) CymEng_Eng GBjson \ File Edt Formst Wiew Help
] Elng EI_GRson i A
) EngZzz Eng GE.jsan 1 “meta”: {
) GawGer_Ger_DE jsan 372003 13:43 "verslonId™: "CywEng_Eng GB",|
& Lottt TEjson s “versionllane”: “Welsh - English (United Kingdom)*,
2 LisGer_Ger BEjzom y “versionNumber’ "8.3.57,
e “author™: “Florian Breit <f.breitgbangor.ac.uks, lanto Gruffydd <ianto.gruffydd
“date”: "2823-83-86",
“options™: {
"1sb_show_other_sex™: tri
“1db_minimun_required langusges”: 2,
"1db_show_reading”: false,
“1db_show_writing: false,
“club_show_codeswitching™: false
)
I3
“base™: {
“appTitle™:
“Language and Secial Background Questionnaire”
1,
“yas™: [
“Yes™
L
“no": [
e
“next”: [
“Next”™
1 v
< >

Ln3, ol 38 100% Windows (CRLF) UTF-8

Fig. 2.33: Setting the codeswitching option to “false”

Note: Make sure to restart the app so that the change can take effect.

After removing the code-switching section, the CLUB section finishes on the question prior to the code-switching

question that asks participants to indicate which language or dialect they generally use for various activities (see Figure
41).

If you wish to change it back to including the code-switching question, you must reverse the process and change the
value back to “true”.

Please indicate which language or dizhect you generslly use for the following activities,

Only English Hali/Ha Only Welsh

Reading v
Emailing VA
Texting

Social media

Nates

/A
chopping list memos, nate

TV, films, radio

ntemet

Praying

NEXT

Fig. 2.34: How the question appears in the app with “Reading” and “Writing” options removed

2.6. Research task: LSBQe 31

LART Research Client, Release 0.4.0

2.7 Research task: AToL

The AToL begins with a start screen where you must select a version, input Researcher ID, Location, Participant ID
and confirm that consent has been obtained by ticking the relevant box.

You will not be able to advance without completing each respective part of the start screen (see Figure 42).

ATol-C: Language Questionnaire (RML)

lanto

START

Fig. 2.35: AToL Start Screen

The next screen begins the AToL proper, asking the participant to rate the relevant languages, depending on the AToL
version selected.

The majority language always appears first due to sociolinguistic plausibility, for instance, because all instructions
appear in the majority language in the original AToL versions for the LART research client app.

The bipolar adjective pairs are always generated in a random order (the specific order for each participant is recorded
in that participant’s the data file). The AToL presents the statement “The X language is...” followed by the AToL’s
bipolar adjective pairs which are rated by using the sliders as seen in Figure 43 below.

The AToL is a task that involves exclusively using sliders, and the order of the adjective pairs is randomised for each
participant.

For ease of analysis, your result file for a given participant (see Figure 59 here) reports the order in which the adjectives
were presented for that participant.

After activating each slider and providing a rating along each bipolar adjective pair, the next button activates in a darker
shade of blue, indicating that you may advance to the next part of the AToL.

32 Chapter 2. User Guide

file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/users/exporting-data.html#id8

LART Research Client, Release 0.4.0

ATolL Questionnaire (RML)

The English language is...

Plaase move the 5 to record your choice

unambiguos ambiguous
L]

sysTematic unsystematic
L]

angular reund
L]

clumsy graceful

L]
logical illogical
L]
unstructured structured
L]
pleasant unpleasant
L
smooth raspy
L

Fig. 2.36: AToL rating

appealing abhorrent
L J
harsh soft
®
beautiful ugly
®
flowing abrupt
®
precise vague
o

choppy fluent
L]

inelegant elegant
L]

NEXT

Fig. 2.37: Completed AToL section with an activated “next” button

2.7. Research task: AToL 33

LART Research Client, Release 0.4.0

2.7.1 Loading and customizing a generic version of the AToL

As for the LSBQe, an “English-generic” version of the AToL is made available. Unlike the LSBQe, however, it is not
possible to load a generic version of the AToL without customizing it.

This is due to the fact that while the LSBQe may refer to “the other language”, the AToL is dependent on naming each
language under investigation at the top of every page (see Figure 43 “the English Language is...”)

Mame N Date modified ype Size

generic versions) 13, | *EngZz_Eng GE json - Notepad - o X
d) CymEng_Cym_GB.json File Edit Format View Help
3l CymEng Eng_GBjson

«| EngZzz_Eng_GB.json 10/03/2 "meta™: o
| Lmolta_fta_ITjson “versionld": "EngZzz_Eng_GB",
- “versionMame”: “English - generic (United Kingdom)"
o LtzGes_Ger_BE ’
e ERen “versionbumber™: "8, 3.4",
“author”: “Marco Tamburelli <m.tamburelligbangor.ac.uk>",

"date”: "2823-81-18"

Is

"intface_info": {
"title™: "Language Questionnaire”,
"language™: "English”,
“rml”: "[ENTER language name HERE]™,
"instruction”: "Please move the slider to record your choice.”
"language_header”: "The English language is...",
"rml_header”: "[ENTER language name HERE] language is...",
"atol_header”: "ATol Questionnaire (RML)",
"btn_text™: "Next™,
“thank_you": "Thank you for completing the questionnairel”,
"next_task": "Please click [continue] when you're ready”

“adjectives”: {

“logic": ["logical”, "illogical”],
“elegance": [“inelegant”, “elegant®],
“fluency”: [“choppy™, “fluent™],
“ambiguity™: [“unambiguous”, “ambiguous”],
“appeal”: [“appealing”, “abhorrent”], .
Wetam T R

Ln 3, Col 38 100% Windows (CRLF) UTF-8

Fig. 2.38: Generic AToL file EngZzz_Eng_GB

Firstly, as seen in Figure 22 you must open the generic file and “save as” in order to make a copy ready for customisation.

After that, change the “versionID” and “versionName” to reflect your customization. Following the English and Scots
example presented here, this would be [EngSco_Eng_GB]

Your file name should match your “versionID”, which must follow the ISO standard code sequence (see the note)

In order to produce a customized version of the AToL, you must also change both “rml” and “rml_header” to indicate
the language(s) pertinent to your AToL version.

2.8 Research task: AGT

The Audio Guise Tool (AGT) allows users to run either a Matched Guise Technique (MGT; Lambert, Hodsgon, Gardner
& Fillenbaum 1960) or a Verbal Guise Technique (VGT; Markel, Eisler & Reese 1967) (see Breit et al., 2023 for detail).

Differentiation between MGT or VGT is executed via your audio recordings, and it is explained in some detail below.

34 Chapter 2. User Guide

file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/users/research-task-lsbqe.html
file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/users/research-task-atol.html#id2
file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/users/research-task-lsbqe.html#id3
file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/users/research-task-lsbqe.html#id8

LART Research Client, Release 0.4.0

ame Date modified ype Size

generic versions 33, | *EngZzz_Eng GB json - Notepad - O %
| CymEng_Cym_GE json 0/03/2023 13:32 File Edit Format View Help
| CymEng_Eng_GB.json) { ~
| EngZzz_Eng_GB.json 10/03/2023 13:3 "meta”: {
| Leolta_lta_ITjson 0 “versionld": "Englzz_Eng_GB",
| LizGer Ger BEjsom :vers?onl‘lame":“"[lr!glisr'"— generic (United Kingdom)®,
versionlumber 8.3.4%,
“author": “"Marco Tamburelli <m.tamburellifbangor.ac.uk>",

“date”: "2823-81-18"

Is

“intface_info": {
"title": "Language Questionnaire”,
“language™: "English”,
“rml”: "[ENTER language name HERE]",
"instruction”: "Please move the slider to record your choice.”,
"language_header”: "The English language is...",
"rml_header": "[ENTER language name HERE] language is...",
"atol_header”: "ATolL Questionnaire (RML)",
"btn_text”: "Next”,
"thank_you": "Thank you for completing the questicnnairel”,
"next_task": "Please click [continue] when you're ready"

“adjectives”: {

"logic™: [“logical”, “illogical™],
"elegance”: ["inelegant”, "elegant”],
“fluency”: ["choppy™, "fluent"],
“ambiguity™: [“unambiguous”, “ambiguous”],
“appeal": [“appealing”, “abhorrent"], .
[T [
Ln3, Col 38 100% Windows (CRLF) UTF-8

Fig. 2.39: New customized AToL file EngSco_Eng_GB

2.8.1 Loading recordings for the AGT

The AGT requires thirteen recordings in order to function. Eight recordings are classed as experimental recordings,
four are classed as filler recordings and one is a practice recording.

For an MGT setup, you must load eight experimental recordings from four speakers, with each speaker providing a
recording in either language variety.

For a VGT setup, you would load eight experimental recordings from eight speakers, with four speakers providing a
recording in one language variety, and the other four speakers providing a recording in the other language variety.

What to do with the four fillers is left up to you. For instance, in an MGT setup, continuity with experimental stimuli
may be preferred, so the four fillers could be recorded by two speakers, with both speakers providing a recording in
each language variety.

The practice guise is presented first during an AGT and allows the participant to familiarise themselves with an AGT
without testing experimental stimuli. Practice stimulus design is decided by the researcher, for instance, you may
wish to produce a recording of yourself talking about a neutral topic for the same length as the experimental and filler
recordings.

Sound files must be labelled appropriately in order for the AGT to execute the audio correctly. The audio recording
for the practice guise must be named “practice.mp3”’; audio files for fillers must be named beginning with “f” plus
the number of the filler (i.e., f1.mp3 to f4.mp3); and experimental guises must be marked “s” plus number to denote
your speaker, then underscored before either “maj” or “rml” to mark the different language varieties (see Figure 48 for
example).

These labels must be assigned consistently to the file names, but it does not matter which variety you choose to label
“maj” and which “rml” (though if working with a majority language and a regional/minority language it may help
analysis if you use “maj” for majority and “rml” for minority language). What matters for app functionality is that you
assign the “maj” label to one language/variety and the “rml” label to the other, keeping it consistent throughout your
set-up.

In the example below in Figure 47, “maj” indicates Chinese recordings and “rml” indicates English recordings. Do

2.8. Research task: AGT 35

LART Research Client, Release 0.4.0

note that this is done consistently for all recordings.

Warning: File names are case-sensitive and must be written identically to how they appear here in order for the
AGT to function.

All sound files must be in mp3 format for the AGT to function.

To load your own recordings for the AGT, open the folder [mgt] by following the path below:

C:\Users\username\AppData\Local\Programs\LART\ResearchClient\lart_research_client\web\
audio\agt

Create a new folder which follows the ISO standard code sequence (see the note here for standard code sequence gen-
erating) to store the sound files for your AGT. For example, for an AGT set-up to work with Chinese-English bilinguals

in Singapore and use English as the language of presentation, you would create a folder called “ZhoEng_Eng_SG”, as
follows:

« 4 > ThisPC > Windows (C) » Users > ntg2ljl > AppData > Local > Programs > Research Client > lart_research_client > web > audio > mgt >
Name Date modified Trpe
Quick access
B Desktop
¥ Downloads

CymEng_Eng_GB
Lmolta_fta IT
LtzGer_Ger_BE

Documents Zhokng_Eng_SG

& Pictures

Fig. 2.40: New folder ZhoEng Eng_SG created following the ISO standard code sequence

Inside your folder, paste your own sound files but copy the standard code sequence described as above for file names
when naming your sound files.

> Users » ntg21jl > AppData > Local » Programs > Research Client web > audio > mgt > ZhoEng_Eng_ v O
U 21jd > AppD: Local » P R b o Zhokng_Eng SG &

Name # Title
A flmp3

& f2mp3

& fmp3

A famp3

& practicemp3

A& s1_majmp3

& s4_majmp3

A s mlmp3

Fig. 2.41: Sound file names for AGT following the standard code sequence

Your files will now play when you start the AGT and select your AGT version on the start menu.

insert screenshot once agt version has been implemented in the app

36 Chapter 2. User Guide

file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/tutorials/localisation-translations.html#id5

LART Research Client, Release 0.4.0

2.8.2 Loading a generic version of the AGT
Similarly to the LSBQe (here) and AToL (here) an “English-generic” version of the AGT is made available. Select the

generic version of the AGT by selecting the “English — generic (United Kingdom)” version from the LSBQe version
drop down list.

MGT: Voice Rating

English - generic (United Kingdom) v

Fig. 2.42: Loading a generic version of the AGT

2.8.3 Customizing a generic version of the AGT

You may wish to customize a generic version of the AGT if you would like the AGT home screen to list a specific
language pair to use during your study.

In order to customize a version of the AGT, open the file [EngZzz_Eng_GB] by following the path below:

CA\Users\username\AppData\Local\Programs\LART\Research Clienf\research_clienf\agi\versions

) CymEng_Cym_GBjson
) CymEng_Eng_GB.

Fig. 2.43: File path and AGT version files
Firstly, you must ensure that you save as, following the ISO standard code sequence (see the note here for standard
code sequence generating).

Secondly, you must change the “versionID” and “versionName” to reflect your customization. Your “versionID”
should match your file name.

Figure 51 follows the same example presented in Figure 17.

It is not mandatory to include English as one of the languages on the “English — generic” AGT version. For example,
if you are a dialectologist who requires a VGT to study Ulster Scots and Irish in Northern Ireland, you would call your
file [ScoGle_Eng_GB] and apply the changes to versionName and VersionID as above.

Note: Note that the third label in the file name [ScoGle_Eng_GB] remains “Eng”, as this refers to the language in
which the AGT is presented, which in this case is still English.

2.8. Research task: AGT 37

file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/users/research-task-lsbqe.html
file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/users/research-task-atol.html
file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/tutorials/localisation-translations.html#id5
file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/users/research-task-lsbqe.html#id5

LART Research Client, Release 0.4.0

Users » ragiivl > AppData » Local » Brograms » LART » LART Research Chint W0.55-windd » Research Client » ressarch chent » mot

Fig. 2.44: New AGT file ZhoEng_Eng_SG

Seeing as no language names are mentioned anywhere in the AGT, the only other component where the languages you
choose to study are important is the recordings you load onto the AGT (see here). Everything else can remain the same
as in the “English — generic” version.

2.9 Locking and unlocking the app

The app is always in a “locked” state when it is first started. The locked state prevents the user from (accidentally
or purposely) carrying out certain actions, such as inspecting the logic behind the forms they see or using right-click
context menus to reload or revert to an earlier screen.

Done unintentionally, this could lead to invalid, corrupted, or duplicate responses, and/or might give the participants
information about the administered tasks that the researchers might not want them to have (at the point of data collec-
tion).

Researchers might find it useful however to unlock the app and access such functionality from time to time. For example,
to go back to the previous screen if an error was inadvertently made, or to reload the current screen if for any reason
something isn’t rendered correctly. Unlocking the app is also useful for researchers who develop new localisations of
a task (see here).

To unlock the app, open the side menu and click Unlock app. After unlocking the app, right click and these options (as
well as a few more) will be available to you. If intervening during data collection, it is good practice to lock the app
again once the necessary intervention has been carried out.

Do this by following the same steps as for unlocking.

To unlock the app, open the side menu and click “Unlock app”. After unlocking the app, right click and these options
(as well as a few more) will be available to you. If intervening during data collection, it is good practice to lock the app
again once the necessary intervention has been carried out. Do this by following the same steps as for unlocking.

38 Chapter 2. User Guide

file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/users/research-task-agt.html#loading-recordings-for-the-agt
file:///C:/Users/admin/Documents/lart-research-client/docs/build/html/tutorials/localisation-translations.html#localisation-and-adding-translations

LART Research Client, Release 0.4.0

LART Research Client

Instance UUID: 2b0e102d-fde4-11ec-bf01-20c19b9419ba.

(%) Discard attempt

(] Export data
8 Unlock app
) Settings

(D About

Fig. 2.45: Open the sidebar to unlock the app

Back Alt+Left Arrow f—
Forward Alt+Right Arrow

Reload Ctrl+R

Save as... Ctrl+S dialects y
Print... Ctrl+P

Cast... r dialect

[0 Send to your devices

Create QR Code for this page

rml
(LLJ]

Translate to English

View page source Ctrl+U

Inspect

Fig. 2.46: Right click will reveal options available after unlocking app

2.9. Locking and unlocking the app

39

LART Research Client, Release 0.4.0

2.10 Exporting data

Data for each task (e.g., informed consent, LSBQe) will be automatically stored in a JSON file on the computer running
the app once the participant has submitted their response.

However, if you want to export the data manually, e.g., to make a backup to a different location or collate data collected
on various devices, you can do this straightforwardly on the app.

For the simplest way to do this, open the side menu, and click on Export Data.

LART Research Client

Instance UUID: 2b0e102d-fde4-11ec-bf01-20c19b9419ba.

() Discard attempt

[}] Export data
& Unlock app
> Settings

() About

Fig. 2.47: Figure 54- Open the side bar to export data

Once you have clicked on export data, a dialogue will appear which allows you to save a ZIP archive containing all the
responses currently stored on the computer in a location of your choice.

Note: Identify and remember your file path before saving, so that you know where to find your ZIP archive containing
the exported data.

Your next step will be to verify that all the data collected appears as it should in your exported ZIP Archive file.

To find your data in order to verify that the data has been backed up correctly, firstly, follow the file path that your ZIP
Archive file is located in.

In order to follow the file path, you must show hidden items in the “view” section your ‘“File Explorer”.

Next, discover your ZIP Archive exported data file via the following path:

40 Chapter 2. User Guide

LART Research Client, Release 0.4.0

1 Save Data Backup as...

1t <« Program Files (x86) » LART » Research Client

Search Research Client

Organize ¥ New folder == o
B8 This PC A Name Date modified Type Size "
B Desktop cffi-1.15.0.dist-info 29/06/2022 16:13 File folder
::l Documents eel 29/06/2022 16:13 File folder
2/06/2022 16:12
; Downloads gevent 29/06/2022 16:13 File folder
. gevent-21.12.0.dist-info 29/06/2022 16:13 File folder
Jﬁ Music) .
_ greenlet 29/06/2022 16:13 File folder
&= Pictures greenlet-1.1.2.dist-info 29/06/2022 16:13 File folder
| Videos lart_research_client 29/06/2022 16:13 File folder
"_& Windows (C:) markupsafe 29/06/2022 16:13 File folder
= T7Touch (D3) pycparser-2.21.dist-info 29/06/2022 16:13 File folder
- ntgzljvl f\\fs-ron o setuntonls-67.2.0.dist-info 29/06/2022 16:13 File folder s v
IR o trc_backup 2022-07-07T1 .
Save as type: | ZIP Archives (".zip) v
~ ide Folders Cancel
Fig. 2.48: Figure 55 - Saving the exported data
gl M ¥ | Manage Windows (C:)
- Home Share View Drive Tools
I] TH Preview pane Bl Extra large icons [Large icons [&= Medium icons | | Group by ~ [[] ttem check boxes F—1
=1l small icons EE vist _EEE Details i1 Add columns = [w] File name extensions =
Nm?.i“von [Details pane | &= yije [= content ¥ by~ [l Size all columns to fit Hidden items Hme,ts:,l.imu Op-t‘lom
Panes Layout Current view Show,/hide
« * 4 &% » This PC » Windows (C:)
Fig. 2.49: Tick the “hidden items” box in order to display all of your file path
2.10. Exporting data 41

LART Research Client, Release 0.4.0

C:\Users\username\AppData\Local\Programs\LART\ResearchClient\
Open up your ZIP Archive back up and open the folder that corresponds to the task used in your study.

For instance, if you’re verifying data that you collected from the AToL, open “AToL-C” (see Figure 57).

ATol-C |
Consent e fol
L5SB0-RML I
MGT I

Fig. 2.50: Task folders located in your exported ZIP Archive

Located inside the file will be your .json data files, labelled in “participant_date_time” format (see Figure 58).

MName

| C345M_10_03_2023__09-17-49,)son

Fig. 2.51: .json data file in participant_date_time format
File name accuracy should indicate if your data has been collected and exported properly, but you can open the file to
verify completely that data was collected and exported accurately.

For instance, in the example below (Figure 59), by observing that each AToL adjective pair, per language, equates to
a number (how your participant rated the language for the trait via the slider mechanism).

For advanced users who want to automate export or backup of the responses, or monitor and integrate these files with
some other system, the files can be accessed directly on the system.

On Windows these are stored in the Roaming profile by default, identified by the path %AppData%LARTResearch
Clientdata.

On Mac OS X the default path will be ~/Library/Application Support/Research Client/data.

For most Linux distributions the default path will be ~/.1local/share/Research Client/data.

Note: It is best practice to not modify or work with the original data files where this is avoidable.

This is expected behaviour for unsigned software downloaded from the internet. It is meant to get you to check that
you’ve downloaded the Software from a reputable source before running it.

42 Chapter 2. User Guide

LART Research Client, Release 0.4.0

| C345M_10_03_2023_07-17-48,jsen ISOM File

C3450_10_03_2023_09-17-49.json - Notepad

File Edit Format View Help

appeal”,

"harshness”,
"beauty ",
“flow",
"precision”,

1,

“Ratl

fluency”,
elegamce”

ngs_atolRatingsMaj™: {

"rating English_ambiguity”: "6&8.3618421052632",
"rating English_angularity™: 497,
“rating_English_appeal”: "48",
"rating_English_beauty": "52",
"rating_English_elegance”: "51",
"rating_English_flow": "47",

"rating English_fluency": "51",

"rating English_grace”
"rating_English_harshn
"rating_English_loglc"”
"rating_Engllish_pleasure”

"rating_English_precisien™: "417,
"rating_English_sistem": "49",
"rating English_smeothress™: "457,
"rating_English_structure™: "47"
by
“presentatlon order_atolRatingsRml™: [

“precision”,

"fluency”,

Ln 36, Cold2 100% Windows (CRLF)

Fig. 2.52: Check that your data file contains data inputed by your participant

2.11 Discarding an attempt in progress

UTF-8

before making use of this functionality.

Warning: The procedure described below might lead to the irretrievable loss of data.

Please ensure that you read this information carefully and understand the ramifications of discarding an attempt

Discarding a participant’s attempt at a task can be done straightforwardly at any stage of the data collection process,
including during the consent stage. To do so, open the side menu and click “Discard attempt”. Once the attempt has

been discarded, the app will return to the app home screen.

Note that discarded responses will not be saved on the device and any information a participant may already have

entered for that task will be irretrievably lost.

Discarding an attempt will usually be the appropriate choice where a participant choses to withdraw their consent
during the study, and should align with the ethical procedures in place for your research. If a response has already
been submitted successfully and consent is withdrawn retrospectively, the researcher must manually ensure that data

is deleted where that might be required.

2.11. Discarding an attempt in progress

43

LART Research Client, Release 0.4.0

LART Research Client

() Discard attempt

[f] Export data
B Unlock app
{& Settings

(1) About

Fig. 2.53: Open sidebar to discard attempt

44 Chapter 2. User Guide

LART Research Client, Release 0.4.0

2.12 App Settings

The app’s settings can be accessed via the app side menu. There are numerous aspects of the app that can be changed
on the settings page. The various options are discussed in some detail below.

LART Research Client

(Discard attempt

[Export data
& Unlock app
& Settings

@ About

Fig. 2.54: Open the sidebar to enter settings

Remember to click Save changes and restart the app in order for the changes you make to take effect.

Tip: If you modify a setting, it will show up in gold. Pressing the red Reset button will revert to the previous setting.
Pressing the green Default button will revert to the default setting. This is illustrated in Figure 10:

Task sequencing
Configures the automatic sequencing of tasks. If a task is assigned a follow-up task, the user will be automatically redirected to the follow-up task upon completion,

Task following the AToL-C:

Memory Game (nemorygame) (default)
Task following the Consent Form:

LSBQ-RML (1sbarnl) (default) m
Task following the LSBQ-RML:

AToL-C (atale) (default) m EEn
Task following the Memory Game:

S

Task following the MGT:

Fig. 2.55: Settings interface with modified task sequencing

2.12. App Settings 45

LART Research Client, Release 0.4.0

2.12.1 General settings

The general settings section is used to configure basic running parameters of the app. These typically do not need to

be adjusted.

General

General app settings.

Shutdown delay:

Fig. 2.56: Editing shutdown delay in the general settings

ShUtdf%)‘e d ﬁlc'g?’number

Default: 2.00

Shutdown delay is the amount of time (in seconds) that the app’s backend process (basically, what you can see
in the terminal window) waits before closing after you close the main app window.

Under normal circumstances there should be no need to adjust this. However, it can be beneficial to increase
the shutdown delay when using an underpowered device e.g., a 4GB Surface Tab Go or some other device not
meeting the recommended system requirements (see Compatibility and Requirements for more information).

Problems with limited system resources can lead to the app freezing or becoming unresponsive. Increasing the
shutdown delay means that the app will wait longer in case the system temporarily delays the processing of
expected signals and information.

2.12.2 Logging settings

Logging settings involves the app’s debug and error logging functionality. While you will not usually have to access
these files, they can contain useful information for researchers developing an extension for the app, those creating a
new localisation of a task, or generally for diagnostic information if an unexpected error occurs.

You may be asked for information from the log files if you report a bug which will help us to reconstruct what happened
when the error occurred on your computer.

Logging settings

Configures the app’s debug and error logging.

Maximum number of log files to keep:

Default log level:

st

Console log message format:

e: {levelname

File log message format:

Fig. 2.57

: Logging settings

88 Default

46

Chapter 2. User Guide

LART Research Client, Release 0.4.0

Warning: The log files may potentially contain any of the information that a user/researcher/participant enters
into the app while it is running.

For this reason, you must apply the same information security policies to the log files as you do to the response
data itself.

If you share log files with a third party, you should ensure that they do not contain identifiable data which you would
not otherwise share with that party.

You may want to “sanitise” your log files (by manually removing any sensitive/identifiable data) before sharing them
and/or make sure that the other party is aware and capable of keeping this data secure in line with your policies.

Haxlmig,npg:uﬂﬂggerof log files to keep
Default: 10

The maximum number of log files to keep determines how many logs from previous runs of the app are kept,
and once this number is reached old logs are deleted. By default, the app keeps logs files for the last 10 times it
was started.

Defauls, log dgel
Default: 30

The log level determines how detailed the log files are. The lower the numeric level, the more detail is stored in
the log files.

Lowering the log level might be useful if you try to diagnose an error or bug and it is not apparent what led to the
undesired behaviour from the existing logs (however, we recommend not doing this “just in case”, as the amount
of information might be overwhelming with log levels below 30).

Console lpg message format
pe: String
Default: {levelname}:{name}: {message}
Modifies the format of log messages shown in the console window that runs in the background of the app.

The log message format is only relevant for advanced users and developers who may want to format logs in a
specific way for working with their preferred analysis tools. If you are not sure what this is or how it works, there
is no need for you to modify it.

For details on the formatting see the documentation of the logging package in the Python standard library.
File ,})9 e§n§§r§€§e format

Default: [{asctime} {levelname:<8} {name}] {message}

Modifies the format of log messages stored in the log files while the app is running.

The log message format is only relevant for advanced users and developers who may want to format logs in a
specific way for working with their preferred analysis tools. If you are not sure what this is or how it works, there
is no need for you to modify it.

For details on the formatting see the documentation of the 1ogging package in the Python standard library.

2.12. App Settings 47

LART Research Client, Release 0.4.0

2.12.3 Path and directory settings

The path and directory settings configure the paths used by the app for storing and reading various files, such as the
data collected from participants, the app settings, and the log files.

If paths are modified it is best to always restart the app and fully test that everything is working as expected, including
inspecting the stored data files after running a task.

On Windows, the app by default uses paths in the so-called roaming profile to store settings and data. This means that
if you install the app on a networked domain computer, it’s settings and data will transfer across to other computers
in the domain where you log in with the same credentials. This is of course provided your system administrators have
not modified the behaviour for roaming profiles on the domain, so it’s a good idea to check for yourself that this works
when you log in to other computers if you plan on relying on this feature in some way (we always recommend making
your own backups and not overly relying on system backup features — those should be seen more as a second-line
defense or ‘backup of the backup’ if anything).

Warning: It is strongly recommended that you do not modify any of the app paths unless you are positively
confident that you know what you are doing. Incorrect path information could lead to unstable behaviour and in the
worst case even data loss.

Path foF. COREIEUFAHIoR files
Default: %AppData%\LART\Research Client (on Windows)

This is the path where the app will look for configuration files (such as settings. json, the file in which these
settings are stored). As opposed to the other paths, changes to the value here will have no discernible effect and
will revert automatically upon start-up. The path for configuration files thus mainly has informational value.

Path for. 48L& &l §fectory

Default: %AppData%\LART\Research Client\Data (on Windows)

This is the path where data files, i.e. the participants’ responses, from the app tasks are stored.
Path ’f)(')l])rezlﬁgthf o]'é'3 airectory

Default: %AppData%\LART\Research Client\Logs (on Windows)

This is the path where the app’s log files are stored and will be handy to know if you ever have to debug or report
an error. However, note the potential data security policy implications noted in the Logging settings section
above.

Path ,f}gﬁ'e:t%o%a{a}lgc&)%hed data and files

Default: %LocalAppData%\LART\Research Client\Cache (on Windows)

This is the path to a directory where the app may temporarily cache (sore, modify, delete) various filed during
operation.

48 Chapter 2. User Guide

LART Research Client, Release 0.4.0

2.12.4 Task sequencing

The task sequencing settings allows you to configure which tasks (if any) should follow the completion of a specific
task. This facilitates a more convenient data collection process where the user is automatically directed to the next
task without the need for researcher intervention. This also negates the need to re-enter participant details (and the
associated margin for error) at the start of each task, as these are transferred across tasks automatically.

Example: The deafault LSBQe sequence

For example, with the default settings, when the informed consent task is completed the participant will be automatically
advanced to the LSBQe, and when the LSBQe is complete they will be sent to the conclusion screen before then being
redirected to the app home screen (see Figure 12).

5k, the user will be automatically redirected to the fellow-up task upon completion.

Task following the AToL -C:

83 Defaut

Task following the Consent Form:

Task following the LSBQ-RML

Task following the Memory Game:

Task following the MGT

Fig. 2.58: Default sequencing: Consent Form > LSBQe > Conclusion Screen > App start screen

Note also that the sequencing doesn’t rely on the entry point. If the participant is starting directly with the LSBQe in
the default sequence, they will then still follow the remainder of that sequence, i.e. the Conclusion Screen followed by
the App start screen.

Example: A custom sequence

You could decide to use any possible sequence consisting of available tasks, though note that you should only use the
Conclusion Screen for the end of the sequence.

For instance, you may not want to require an electronic consent form for your study, thus removing the consent form from
the sequence, and may want the LSBQe to advance into the AGT as is typical in linguistic studies where a background
questionnaire precedes the main research method, followed by a conclusion screen to inform the participant they have
completed all tasks and that they should await further instruction from the researcher. This sequencing is demonstrated
in Figure 13:

Should you require every available task to be sequenced, you may also do so, as shown in Figure 14:

2.12. App Settings 49

LART Research Client, Release 0.4.0

Task sequencing

Configuees the sutomatic iquencing of Links. If & task o dssgred 8 follow-p Lk, the user will b sutomatically rediescted 10 the follow-up task Upon completion
Task following the Aol C
Tash folkowng the Content Form
Task followng the LS8Q RML
Task folioweng the Memary Game:
Task following the MGT
- =3

Fig. 2.59: Customised sequence: LSBQe > AGT > Conclusion Screen > App start screen

Task sequencing

CorAgures the BADMINS seguerong of tanks. 1f & Lk 15 a5sgned 3 follow-up WL the uier wil Be SRcmatcally redected 10 The lollow-up Ltk LpoOn completion

Task followeng the ATol -C

Task tolkormng the Consent Form
Tank fellowndg the LSBQ &ML
Task following the Memory Game:

Tank fellowng the MGT

Fig. 2.60: Consent Form > LSBQe > AToL-C > Memory Task > AGT > Conslusion Screen > App Start screen

50

Chapter 2. User Guide

CHAPTER
THREE

QUICK TUTORIALS

3.1 Localisation and Adding Translations

The LSBQe is designed to allow easy implementation of interfaces in any language you choose.

At the moment, the languages available are English, German, Greek, Italian, and Welsh. The setup is for four
bilingual communities: Welsh-English, Lombard-Italian, Moselle Franconian-German, and Greek-English:

Language and Social Background Questionnaire (RML)

Select LSBQ-RML version:

Welsh - English (United Kingdom) v

ltalian — aly

Moselfriinkisch — Deutsch (Belgien)

Fig. 3.1: Selecting a version of the LSBQe
However, both the working languages and the setup for specific bilingual communities can be easily changed by pro-
viding a translated version to suit your own research settings.

To do this, you will need to create a new file, provide a translation for each interface item and then save it with a specific
naming convention. Each step is outlined below.

3.1.1 Creating and Naming your file
To create a new file for your translation, go to the location where the I’ART app is installed, and open the Versions
folder.

Below is the path you need to follow in order to find it. The path your app is located in depends on whether you installed
the app for a single user or for all users (you will have made this choice on installation).

Below is an example of the path when the app is installed for a single user:

Sometimes Windows hides the folder AppData from view. To make it visible, click on the View tab and ticking the box
labelled Hidden items as follows:

However, if you installed the app for all users, you will find the Versions folder by following a different path, as
below:

To have an interface in the language of your choosing, open the file called CymEng_Eng_GB. json. This is the British-
English version of the interface built to work with Welsh-English bilinguals.

51

LART Research Client, Release 0.4.0

your own user name here

1 » ThisPC > Windows (C:) » Users > me > AppData > Local > Programs 5 LART > ResearchClient » lart_research_client » Isbgerml > versions

A Name Date modified Type Size
CymEng_Eng_GB json JSON Source File 15KB
Lmolta_lta_ITjson JSON Source File 21Ke
LtzGer_Ger_BE json JSON Source File 2K8

Fig. 3.2: Finding the “versions” folder if you installed ART Research Client for a single user

-

n [Previewpane ' Extra large ieons) Large icons [Group by ~ [ttem check boxes
S) smatlicons FE List Tl 2a4 cotumns =
valgleh‘on [HDetails pane &2 145 S Content R T p—
Panes Layout Current view
Pe “ 4 1 ThisPC > Windows(C) > Users > me >
A Name - Date modified Tope Size
ipython Fie folder
matplothb File folder
virtualenvs
@ 0ne vicode
neDrive -
e 3D Objects
B This PC AppData
[Desktop (27 Contacts e
%] Documents Development File folder
File folde
3 Dowlosds Documents e folder
& Downloads File folder
D Music T Favorites File folder
= Pictures KingdomSuite
B Videos & Links e
s Windows (C:) D Music File folder
NCH Software Suite File folder
| OneDrive File folder
| . OneDrive - Banger University
a- .- .
« v T » ThisPC » Windows (C:) » Program Files (x86) » LART » Research Client » lart_research_client » Isbgerml» wversions
~
A Name Date medified Type Size
«] CymEng_Eng_GB.json 12/05/2022 & JSON File
«] Lmolta_lta_[T.json JSON File
) LtzGer_Ger_BE json JSON File

Fig. 3.3: Finding the Versions folder if you installed LART Research Client for all users

52 Chapter 3. Quick Tutorials

LART Research Client, Release 0.4.0

You can open this in Notepad, or any text editor of your choice.

Go to File and then Save as, and save it with a new name that includes the language and a label for the bilingual
community you plan to study.

Note: Naming must be done in a specific manner so that the app can find and read the translation you provide.

The naming convention adopted in the ART Research Client is based on ISO 639 codes for the languages (a full list
is found here) and on ISO 3166-1 alpha-2 codes for the countries (click here for a list), but uses capital letters for the
language codes in keeping with CamelCase (see here) as follows:

Description: Heritage Major underscore Language of underscor Country Extension
language language translation e of
interest
Example: Lmeo Ita _ Ita _ IT Json
Gloss: Lombard Italian Italian Italy

Therefore, the Italian language file to be used for research with the Lombard-Italian bilingual community based in Italy
is named: ImoIta_Ita_IT. json.

In the instance where you would like to provide a Modern Standard Arabic translation (Iso code: arb) to study a
bilingual community in Morocco (ISO code: MA) whose native languages are Moroccan Arabic (ary) and Berber
(ber) you would label your file “BerAry_Arb_MA. json”.

Similarly, if you would like to provide a Spanish translation (Iso code: spa) to study a bilingual community in
Spain (ISO code: ES) whose native languages are Galician (glg) and Spanish (spa), you would label your file
“GlgSpa_Spa_ES. json”.

3.1.2 Adding your translation

Your newly created file will now be identical to the original British-English file (except for its name)! Now it’s time
to add your translation. The translation file involves two main pieces of information: a set of labels and a language
output. The labels are what the I’ART Research Client needs in order to function, while the language output is what
you will see in your interface.

To provide your translated version, you need to highlight each bit of language output and replace it with your translation.
Make sure you do not change the labels though, otherwise the app will not find your translation and instead, will output
the default English version.

First, you will need to provide some basic information about the file. This is the information under the header “meta”.
With your new file open in a text editor, begin by highlighting the language output for the label versionId, as follows:

Then, replace it with the code for your translation. Using our Galician-Spanish example above, this will look as follows:
Now go through each item and provide the relevant information for the header “meta”, namely:

1. The version name

2. The authors’ / author’s name(s) and email address(es)

3. The date that the file is created.

Once you’ve completed that, you may begin the translation properly.

3.1. Localisation and Adding Translations 53

https://www.iso.org/iso-639-language-codes.html
https://iso639-3.sil.org/code_tables/639/data
https://www.nationsonline.org/oneworld/country_code_list.htm
https://legacy.python.org/dev/peps/pep-0008/#naming-conventions

LART Research Client, Release 0.4.0

| GlgSpa_Spa_ES json - Notepad - [m] X
File Edit Format View Help
-(~
“meta”: {
"versionld": "SR IGTRE" ,
“versionName”: “Welsh - English (United Kingdom)",
"author™: "Florian Breit <f.breit@bangor.ac.uk>, Ianto Gruffydd <iant
“date”: "2022-04-10"

}I
“base”: {
"appTitle": [
“Language and Social Background Questionnaire (RML)"
]l
“yes“: [
"Yes"
1,
"no": [
“lo™
]’
“next": [
"Next"
»
"addLine": [
“Add line"
2
“levelOfEducationl”™: [
"EQF Level 1",
“No formal qualifications.”
1,
“levelOfEducation2”: [
"EQF Level 2-3",
"GCSE(s), NVQ Levels 1-2."
»
“levelOfEducation3”: [
"EQF Level 4",
“A-Level(s), AS-lLevel(s), NVQ Diploma, HNC, Apprenticeship.”
1, v
. B2 aaaa, £ _an = .
Ln 3, Col 36 100% Windows (CRLF) UTF-8

54 Chapter 3. Quick Tutorials

LART Research Client, Release 0.4.0

7 *GlgSpa_Spa_ES.json - Notepad - a X

File Edt Format View Help

{

"meta”: {
“versionld™: (GlgSpa_Spa_ES”
= ish (United Kingdom)",

“versionName™: E
“author™: “Florian Breit <f.breit@bangor.ac.uk>, Ianto Gruffydd <iant
“date”: "2022-04-18"
}l
“base™: {
“appTitle™: [
"Language and Social Background Questionnaire (RML)"
1

“yes": [
“Yes™
]’

no": [
"No™
1

“next": [
“Next™

»

“addLine": [
“Add line”

1,

"levelOfEducationl™: [
“EQF Level 17,
“No formal qualifications.™

1,
“levelOfEducation2”: [
“EQF Level 2-3",
"GCSE(s), NVQ Levels 1-2."

“levelOfEducation3™: [
"EQF Level 47,
“A-Level(s), AS-Level(s), NWQ Diploma, HNC, Apprenticeship."

1

Ln 27, Col 1 100% Windows (CRLF) UTF-8

3.1. Localisation and Adding Translations

55

LART Research Client, Release 0.4.0

Ensure that you highlight each language output for each item and provide your translation! For example, under the
label “yes”, you would replace the output “yes” with *“Si””, taking care not to change the label, which must remain
“yes”, as follows:

2 *GlgSpa_Spa_ES.json - Notepad -

File Edt Format View Help

b
“base": {
"appTitle": [
"Cuestionario de Lengua y Antecedentes Sociales (RML)"

"addLine": [
“"Add line"”

And that’s it! Once you have replaced all items with your translations, restart the app and you will see your Galician-
Spanish version, like so:

Language and Social Background Questionnaire (RML)

Select LSBQ-RML version:

Welsh - English (United Kingdom) v

Welsh — English (United Kingdom)
|_Galician - Spanish (Spaiey
Italian - Lombard (ltaly)
Moselfrankisch — Deutsch (Belgien)

56 Chapter 3. Quick Tutorials

CHAPTER
FOUR

DEVELOPER GUIDE

Welcome to the LART Research Client Developer Guide. This is our “essential reading” for anyone who wants to
contribute, enhance, integrate or otherwise modify the Research Client. It will cover everything from contribution
guidelines and setting up the development environment to understanding how the code is organised and how to build
the app and the documentation from source.

You may also want to have a look at the API Documentation, which covers both the Python APIs for the backend and
the JavaScript APIs for the frontend.

4.1 Contributing

4.1.1 What do | need to know to help?

If you are looking to helo with a code contribution, our project uses Python 3.10 and Eel for the backend, JavaScript
for the frontend logic, and HTML & CSS (specifically, Bootstrap) for the frontend design (i.e., the user interface). If
you don’t feel ready to make a code contribution yet, no problem! You can also checkout Documentation issues, help
by Localisation and Adding Translations adding localised/translated versions for the research tasks we have already
implemented, or thoroughly test the latest release in the app and submit high-quality bug reports to our issue tracker.

If you are interested in making a code contribution and would like to learn more about the technologies that we use,
check out the list of free resources below.

e The official Python Tutorial — Best if you’ve done some programming before but not necessarily in Python 3.

» Sebastiaan Mathot’s Video Tutorials for Python — Good if you're still relatively unsure about programming and
especially Object-Oriented Programming.

e Learn Python 3 The Hard Way — No need to purchase the book, just open the “Contents” menu on the top left
and work through the exercise chapters.

* The Modern JavaScript Tutorial — Pretty comprehensive introduction to all things JavaScript.

* Mozilla’s JavaScript Guide — Can be worked through quite readily and well-integrated with the relevant API
documentation, very good starting point if you’ve done some programming before but not necessarily (modern)
JavaScript.

* Mozilla’s JavaScript API Documentation — All the APT documentation you will need for JavaScript.
* Mozilla’s HTML Guide — Good starting point whether you’re new to HTML or just a bit rusty.
* Mozilla’s CSS Guide — Definitely much more than you’ll need to know for this.

* Official Bootstrap Documentation — As long as you know some HTML and a little bit of CSS, this will cover
most of the rest you’ll need to know to work on the design of the frontend.

57

https://python.org
https://github.com/python-eel/Eel
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/CSS
https://getbootstrap.com/
https://github.com/lart-bangor/research-client/issues?q=is%3Aissue+is%3Aopen+label%3Adocumentation
https://github.com/lart-bangor/research-client/issues
https://docs.python.org/3/tutorial/
https://pythontutorials.eu/video/object-oriented-programming/
https://learnpythonthehardway.org/python3/preface.html
https://javascript.info/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Learn/HTML
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://getbootstrap.com/docs/5.0/getting-started/introduction/

LART Research Client, Release 0.4.0

4.1.2 How do | make a contribution?

Never made an open source contribution before? Wondering how contributions work in our project? Here’s a quick
rundown!

1.
2.

10.
11.

12.

Find an issue that you are interested in addressing or a featue that you would like to add.
Fork our lart-bangor/research-client repository.
This means that you will have a copy of the repository under your-GitHub-username/research-client.

Clone the repository to your local machine wusing git clone https://github.com/
your-GitHub-username/research-client.git.

Create a new branch for your fix using git checkout -b branch-name-here.

The branch name should ideally follow the schema active/category/description-of-issue. For
example to make improvements to the backend logic for the LSBQ, this could be active/lsbq/
improve-backend-logic. For a new tutorial in the documentation it could be active/docs/
basketweaving-tutorial.

We generally follow the principle of using the active prefix for branches that have active development happening
(except the three core branches main, dev, and docs). Once an issue developed on one of these “active” branches
has either been merged into one of the core branches or abandoned (e.g. because someone coded themselves into
a knot) we rename them with the prefix obsolete instead of active. This helps us to keep a good picture of
what is happening on the repository.

If you’re not sure about the ‘category’ or it doesn’t neatly fit to one sub-part of the project, you can just write
active/general/description-of-issue.

If you need to run the app, make test builds, or build the documentation locally, then install the required depen-
dencies with pipenv install --dev (run from inside the project directory, where the file called Pipfile is
located).

If you don’t need to run the app, make test builds, or build the documentation locally, you can omit this.
Make the appropriate changes for the issue you are trying to address or the feature that you want to add.

Use git add insert-paths-of-changed-files-here to add the file contents of the changed files to the
“staging area” git uses to manage the state of the project, also known as the index.

Use git commit -m "Insert a short summary message of the changes made here" to store the
contents of the changes in your “staging area” together with a descriptive message.

Push the changes back to your remote repository (your-GitHub-username/research-client) by using git
push origin branch-name-here (using the same branch name you decided on above).

Submit a pull request to our upstream repository (lart-bangor/research-client).

Title the pull request with a short description of the changes made, and if applicable the issue or bug number
associated with your change.

For example, you could title a pull request “Added additional check to LSBQ data model to resolve issue #1234”
or “Add a basketweaving tutorial to the documentation”.

In the description of the pull request, explain the changes you have made, any issues you think exist with the
contribution you’re submitting, and ask any questions you have for the maintainer(s).

It’s completely OK if your pull request is not perfect (no pull request is!) — your pull request will be reviewed
and the reviewer will be able to help you fix any problems it might have and help you improve it if needed.

In case you explicitly do not want to be credited for your contribution for any reason you should also mention
this in your pull request — otherwise we will assume by default that you are happy for us to add your name and
a link to your GitHub profile to the Contributors in furture versions of the User Guide.

58

Chapter 4. Developer Guide

https://github.com/lart-bangor/research-client
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request
https://github.com/lart-bangor/research-client

LART Research Client, Release 0.4.0

13. Wait for the pull request to be reviewed by a maintainer.

14. Make any changes to the pull request that the reviewing maintainer recommends. They might ask you some
questions to clarify some aspect of your pull request, and it’s totally okay for you to ask questions during this
process as well.

15. Celebrate your success after your pull request is merged!

For a more detailed guide on getting set up to work on the codebase, including if you need to install the dependencies
(like git, python, etc.) so that you can test run and build the app locally, see our guide on Setting up the development
environment.

4.1.3 Where can | go for help?

If you need help, you can ask questions on one of our GitHub Discussions sections. We’ll be happy to help where we
can!

4.1.4 Code of Conduct

We currently have a very simple Code of Conduct:

1. You are responsible for treating everyone on the project with respect and courtesy, regardless of who they are or
what their attributes are.

2. If you are the victim of any inappropriate behaviour or comments, we are here for your and will do the best to
ensure that any abusers are reprimanded and/or removed, as may be appropriate in the situation.

3. If you are abusive to anyone on the project we reserve the right to reprimand you or remove you from the project,
as we may judge appropriate in the situation.

4. Always remember that this is a community we build together .

Note: These contributing guidelines have been adapted from a very neat template provided by Safia Abdalla.

4.2 Setting up the development environment

This article will guide you through the setup of the development environment, aimed primarily at those with relatively
little previous experience of software development.

Tip: If you're a seasoned developer, this guide will probably be a bit verbose for your taste, so if you know what you’re
doing you might just want to install any of the tools listed below (if you don’t have them already), fork the repo, and
run pipenv install --dev in the root of the source tree to get going.

4.2. Setting up the development environment 59

https://github.com/lart-bangor/research-client/discussions
https://opensource.com/life/16/3/contributor-guidelines-template-and-tips

LART Research Client, Release 0.4.0

4.2.1 Installing the pre-requirements

To work on the LART Research Client codebase, you need to have at least the following:
* git — The version management system we use
* python (version >= 3.10) — The primary programming language of the app
* pipenv — The python package we use for virtual environments and dependency management
e chrome — The browser we use to display the app’s user interface
If you want to build the documentation locally, you will also need to have jsdoc installed.

Below are some examples of how you could install this software on various systems, e.g. Windows 10 or 11 if you use
winget, and Ubuntu Linux (note that the newest releases of Ubuntu will have Python > 3.10 already installed). Please
apply these with care. If you're not sure about any of this, it’s best to go to the website of the respective software (linked
above) and just follow their installation instructions!

Windows Terminal / PowerShell

Install Google Chrome

winget install -e --id Google.Chrome

Install Git

winget install -e --id Git.Git

Install Python 3.10+

winget install -e --id Python.Python.3.10
Install pipenv

pip install pipenv

Optional: Install npm and jsdoc (only needed to generate documentation)
winget install -e --id Open]S.Node]S.LTS
npm install -g jsdoc

$ # Ubuntu Linux < 22.04

$ # First make sure the system's packaged and package index are up-to-date

$ sudo apt update && sudo apt upgrade -y

$ # Install Google Chrome

$ sudo apt install libxssl libappindicatorl libindicator7

$ wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb
$ sudo apt install ./google-chrome*.deb

$ rm ./google-chrome®.deb

$ # Install Git

$ sudo apt install git -y

$ # Check your current python version

$ python3 --version

Python 3.9.4

$ # !l You should only run the next command if your python version is below 3.10.x !!
$ sudo apt install software-properties-common

$ sudo add-apt-repository ppa:deadsnakes/ppa

$ sudo apt update

$ sudo apt install python3.10 -y

$ # Now check that you have python3.10 running:

$ python3.10 --version

Python 3.10.5

$ # Install pip and tkinter for Python3.10

$ # (Ff you already had python 3.10 show above, just use '"python3" instead of "python3.10
~")

(continues on next page)

60 Chapter 4. Developer Guide

https://git-scm.com
https://python.org
https://pipenv.pypa.io/
https://www.google.com/chrome/
https://jsdoc.app/

LART Research Client, Release 0.4.0

(continued from previous page)

$ sudo apt install python3.10-pip and python3.10-tk

$ # Install pipenv

$ python3.10 -m pip install pipenv

$ # Optional: Install jsdoc (only needed to generate documentation)

$ sudo apt install npm -y

$ sudo npm install -g jsdoc

$ # Ubuntu Linux >= 22.04

$ # First make sure the system's packaged and package index are up-to-date
$ sudo apt update &% sudo apt upgrade -y

$ # Install Google Chrome

$ sudo apt install libxssl libappindicatorl libindicator?

$ wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb
$ sudo apt install ./google-chrome*.deb

$ rm ./google-chrome*.deb

$ # Install Git

$ sudo apt install git -y

$ # Check your current python version is >= 3.10.0

$ python3 --version

Python 3.10.5

$ # Install pip and tkinter for Python3

$ sudo apt install python3-pip python3-tk -y

$ # Install pipenv

$ python3 -m pip install pipenv

$ # Optional: Install jsdoc (only needed to generate documentation)
$ sudo apt install npm -y

$ sudo npm install -g jsdoc

Following the installation of the above, make sure that both python and pipenv are on your PATH environment variable.
You may need to re-start your terminal, or log out and log back in for this to be the case. To test, just open a new terminal
window and type both python --version and pipenv --version. If this does not work, you need to find out how
to add them to the PATH environment variable on your system before proceeding.

Important: Know your machine!

For most of what follows we will assume you have the above software installed and know the correct commands to use.
This is especially important for Python, which depending on your installation may go by different names.

If you aren’t sure which Python command to use, open a command-line/terminal window and try the following com-
mands in order:

* py --version

e python --version

e python3 --version

* python3.10 --version

The first one of these that doesn’t give you an error message and prints a Python version that is at least 3.10.0 is the
command you should use for everything else.

For simplicity, unless specifying something OS-specific, we will just use python throughout the documentation — it’s
your responsibility to adapt accordingly.

4.2. Setting up the development environment 61

LART Research Client, Release 0.4.0

If you have the pre-requirements above out of the way, you can follow these steps to get the source code and all depen-
dencies set up.

4.2.2 Get a copy of the source code

These are the steps you need to follow to get a current copy of the sourcecode:

1. Open a terminal (console / command-line prompt)

2. Go to (or make) your prefered directory for development.

For example cd C:\Users\florian\Development (Windows) or cd /home/florian/development
(Linux). If you don’t have a directory you use for software development yet, you can use the mkdir command to
create it, then cd into it.

. Clone the repository with git clone https://github.com/lart-bangor/research-client.git.

This will make a local copy of the remote git repository, to which you can then make local changes and which
you can sync back and forth with the remote repository (called pulling and pushing).

Tip: Fork the repository before cloning it...

You might want to make a fork of our repository on GitHub and work on that fork, so that your own work
benefits from the added security of having the version control history in the cloud even if you do not have write
permissions to our repository.

You will also have to make a fork if you want to make a pull request later, which is what you would do to have
your modifications adopted in our official repository and included in future builds of the LART Research Client.

For more information, check out how to fork a repo in the GitHub Quickstart Guide.

. Enter the project’s root directory.

You can do this with the command cd ./research-client. If you now type 1s (Linux) or dir (Windows),
you should see a list of files including one called manage . py — if you see that you know that your code has cloned
successfully and you are in the project’s root directory.

4.2.3 Set up pipenv and install dependencies

We use pipenv to manage the environment and dependencies. This makes it very easy to ensure that everyone working
on the app can keep their dependencies up-to-date and have the same, stable environment for development.

After cloning the source code repository, there are just two steps to get this all set up. We’re assuming you’re still in
the same terminal session as above, inside the project’s root directory (see the last step above).

1. Run pipenv install --dev.

This will set up a new virtual environment (so it doesn’t get polluted by any other packages or changes on your
system’s Python installation, and vice-versa), and then install all the Python packages you need. The --dev
switch is quite important here, because without it you will be able to run the app from the terminal, but you won’t
be able to build the app binaries or the documentation for example.

. Activate the pipenv environment with pipenv shell.

You now have to actually activate the virtual environment, so your terminal knows to use the isolated copy of
Python it made for this project instead of the system installation. You activate the environment by typing pipenv
shell (normally, after this you will see something like (research-client) at the start of your command
prompt.)

62

Chapter 4. Developer Guide

https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://docs.github.com/en/get-started/quickstart

LART Research Client, Release 0.4.0

Important: Remember pipenv!

It’s important to remember to activate and use pipenv whenever you start working on the project. If you don’t,
you’ll probably get error messages, and if you then just use regular pip to try and resolve these you’ll mess up
your system-wide installation and run the risk of introducing new dependencies that can break the code, without
other people being able to later see what these dependencies were. It might also prevent you from being able to
build the binaries from the source.

So, every time you open a terminal to work on the project, remember to use pipenv shell first. Every time
you install a package, remember to use pipenv install <pkgname> or pipenv install <nobr>--dev</
nobr> <pkgname> (if the package is only needed for development, but not for the version the end-user gets).

4.2.4 Running the app from the source

Now let’s test that things are working as they should. Open a terminal and go to the directory to which you’ve cloned
the source code, e.g. C:\Users\florian\Development\research-client (Windows) or /home/florian/
development/research-client (Linux). You know that you are in the right directory if you type 1s (Linux) or
dir (Windows) and the list shown contains a file named manage. py.

Now just type python manage.py run in your terminal and hit Enter. If you get an error, something in the above
steps probably went wrong — check which of the steps the error message seems to relate to and try again from there.
If you see the app’s main window and some text on the terminal telling you that it is running, then you should be good
to go.

Tip: Use a dedicated code editor. ..

If you use VS Code as your editor, you can tell it to automatically activate the pipenv environment when you open
your source code.

Just install the Python extension in VS Code. Then press Ctrl+Shift+P and type Python: Select Interpreter, then
select the one showing “(PipEnv)” in parentheses at the end.

Similar extensions are available for most other editors and IDE:s, it’s worth consulting their documentation on this.

4.2.5 Bonus: Consider using a specialised source code editor
If you have only written a few lines of Python, HTML, or JavaScript here and there in the past, chances are that you’ve
just used a general purpose text editor in the past, such as notepad or gedit.

We recommend that you consider a modern specialised source code editor or IDE (Integrated Development Environ-
ment) instead. The extra features they offer, such as running terminal commands from within the editor, integrating
with git, showing type-error hints in your code, etc. will pay of quickly on a codebase like this.

Some free options you might want to consider:
» VS Code: Lightweight, responsive, platform-independent. Used by most people on our team.

e Geany: Super-lightweigt, responsive, platform-independent. A popular choice for those that don’t want to run
just a ‘free’ Microsoft product or otherwise don’t like VS Code.

* Spyder: Medium-weight, aimed primarily at scientific computing, a bit like RStudio. Worth considering if you
want to also run data analysis in Python.

4.2. Setting up the development environment 63

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://code.visualstudio.com/
https://www.geany.org/
https://www.spyder-ide.org/
https://posit.co/products/open-source/rstudio/

LART Research Client, Release 0.4.0

e PyCharm: A more heavy-weight IDE with many features, quite popular and probably a bit more than what is
needed. It’s commercial software, but there is a free community version you can download, and if you're an
academic or student you can get a free full license.

e vim: Lightweight, super-fast, very powerful terminal-based editor. If you prefer not to use a graphical user
interface and stay on the command line this is probably for you, but the learning curve is rather steep.

4.3 The manage.py utility

The project includes its own little script to simplify many common project management tasks. From inside the project
directory, you can run the following commands:

show the available commands

runs the app from the source files
runs the app in debug mode

cleans up your project directory
builds an executable with PyInstaller
build the documentation

python manage.py -h
python manage.py run
python manage.py debug
python manage.py clean
python manage.py build
python manage.py docs

HHOFH R R W W

4.4 Building from source

This guide will describe how to build the app for distribution with PyInstaller and Inno Setup (if you’re building on
Windows). We assume that you have successfully followed the steps to Setting up the development environment and
Running the app from the source works already.

4.4.1 Additional build dependencies

The LART Research Client app is built with PyInstaller, and Inno Setup is used on Windows to package it up as an
executable installer.

Pylnstaller

Pylnstaller will already have been installed when you have installed the development dependencies with pipenv
install --dev while Serting up the development environment. If you get an error saying that Pylnstaller could
not be found, just run that command again.

Inno Setup
Inno Setup is only needed if you’re building on Windows — so if you’re on Linux or MacOS you can just ignore
anything to do with Inno Setup.

On Windows, Inno Setup needs to be installed on your system or the build process will fail. Follow these simple steps
to install it:

1. Download the latest version of Inno Setup from “https://jrsoftware.org/isdl.php”_.
2. Run the Inno Setup installer on your system to install it.

3. Check whether the command iscc is on your system’s Path by opening a terminal window (Windows+R, type
cmd, hit Enter) and then entering the command iscc followed by Enter.

64 Chapter 4. Developer Guide

https://www.jetbrains.com/pycharm/
https://www.vim.org/
https://pyinstaller.org/
https://jrsoftware.org/isinfo.php
https://pyinstaller.org/
https://jrsoftware.org/isinfo.php

LART Research Client, Release 0.4.0

4. If you see soem text starting with something like “Inno Setup 6 Command-Line Compiler” followed by instruc-
tions, you're good to know and can skip to the next section. In the (very likely) event that you get an error instead,
continue with the next step here.

5. Locate ISCC. exe and note the path to the directory where it is located. This is probably C:\Program Files\
Inno Setup 6 or C:\Program Files (x86)\Inno Setup 6.

6. Either type “environment variables” in the Start search box and open the “Edit the system environment variables”
shortcut that shows up, or go to Settings -> System -> Advanced system settings.

7. On the bottom of the dialog box, click on Environment Variables. . . .
8. Highlight the variable called Path in the top half of the dialogue window, then click on Edit.

9. Click on New and add the path to the directory where Inno Setup (ISCC.exe from before) is installed, e.g.
C:\Program Files (x86)\Inno Setup 6.

10. Click OK repeatedly until all the dialogue windows are closed.

11. Start a new terminal window (it will not work in any terminal windows that were opened before you edited the
Path environment variable) and try running iscc again — it should work now, meaning you’re ready to build
the app on Windows (if it still doesn’t work, you probably entered the wrong path two steps earlier).

4.4.2 Building the app and the installer

Building the app is super simple. Just go to the folder containing the manage. py file, make sure you’re running in the
pipenv shell (if you're not sure, just run pipenv shell again), and then run the command py ./manage.py build
(on Windows) or python3.10 manage.py build (on Linux and MacOS).

The folder . /build will contain all the build artificats and direct outputs from PylInstaller.

The folder . /dist will contain the distributables for the app, in a subfolder named after the system on which they were
built. For example on Linux, there will be a tarball (*.tar.gz) in ./dist/linux, while on Windows there will be
both a ZIP archive and an executable (.exe) installer in . /dist/win64, which can be used to install the app.

4.4.3 Building the documentation

The documentation is built automatically on Read the Docs whenever a pull request, push or merge succeeds on the
docs branch of the repository. Even so, if you're updating the documentation (even in the inline documentation in
the Python and JavaScript files) it might be desirable to build it locally to make sure any changes are reflected as they
should be and nothing breaks.

Additional documentation dependencies

To build the documentation, you need to additionally install jsdoc, as shown as an optional step in /nstalling the pre-
requ irements.

jsdoc is used to extract documentation from within the JavaScript files that provide the app’s APIs in the frontend.

You can check whether jsdoc works by opening a terminal and typing jsdoc. If it is installed correctly and available
on your Path, it should print something like “There are no input files to process.” — otherwise you will need to install
it and make sure it is available on the Path before you can build the documentation.

4.4. Building from source 65

http://readthedocs.io/
https://jsdoc.app/

LART Research Client, Release 0.4.0

Building the documentation

Building the documentation is just as simple as building the app. Like with building the app, make sure you’re in
the directory containing the file manage . py and that you’re in the pipenv shell (any doubt, just run pipenv shell).
Then just run the command py ./manage.py docs (on Windows) or python3.10 manage.py docs (on Linux and
MacOS).

The folder ./dist/docs/html will contain the HTML version of the documentation (we do not currently build the
latex/PDF version offline, as this has too many dependencies and quirks to work reliably from one person to the next).

4.4.4 Cleaning up after yourself

Just like with your bedroom, it’s important to keep your development environment tidy. So once you’ve completed
your builds and inspected that everything is as it should be, you probably want to clean up all the artifacts, local
documentation and distributables generated by the build process. ..

Just run py ./manage.py clean (on Windows) or python3.10 manage.py clean (on Linux or MacOS), and the
manage.py utility will make everything nice and tidy again .

4.4.5 Known issues with building

* Building fails with Python version 3.10.0 due a bug in Python that affects PyInstaller (issue). If your Python
version is 3.10.0 then update to 3.10.1 or later (but not 3.11.x, for which nothing has been tested, ... yet).

4.5 Roadmap

The below roadmap should give an idea of what features and enhancements to the L’ART Research Client that we
envision and plan to implement in the future. It also gives some idea of the various stages at which we would like to
implement these — though these are not necessarily set in stone and may be adjusted as our available development
time (and demand for the features) dictates.

The main purpose of this roadmap is for us as a development team to be able to visualise where we are heading, what
we want to achieve, and how we might go about that, but we explicitly choose to make it public here also so that our
users and collaborators can get a sense for where things might be heading — and of course have a chance to influence
that.

If you would like to dicuss any of the planned enhancements or additional ideas you have, we would very much welcome
your input via the Ideas section on GitHub Discussions.

66 Chapter 4. Developer Guide

https://github.com/pyinstaller/pyinstaller/issues/6301
https://github.com/lart-bangor/research-client/discussions/categories/ideas

LART Research Client, Release 0.4.0

Milestone Research Tasks Usability Data Management | Integrations
1.0.0
* Participant * Modularisa- * Pydantic
Notes tion of task backend
versions * JSON
Schemas
1.1.0
* SPIN Test
1.2.0
* More export * FastAPI
options
e In-app data
synching
Fut
uture e HelLeX e Option to run
and/or LSBQ- online
H
* LSBQ for
children
* A simple BG
Questionnaire

4.5. Roadmap 67

LART Research Client, Release 0.4.0

68

Chapter 4. Developer Guide

CHAPTER
FIVE

5.1 Backend API (Python)

API DOCUMENTATION

agt Package implementing the Audio Guise Task (AGT).

app LART Research Client App.

atolc Data structures for the AToL Questionnaire (RML).

booteel Utilities to work with Python Eel and Bootstrap.

conclusion Conclusion screen for end of task series.

config Configuration handler for L'ART Research Client.

consent Informed consent from user.

datavalidator Simple data validation tools.

1sbq Package implementing the Language and Social Back-
ground Questionnaire.

memorygame Package implementing the Memory Game for the LART
Research Client.

settings Package implementing the Settings UI for the LART Re-
search Client.

utils Utility functions for the LART Research Client app.

5.1.1 research_client.agt

Package implementing the Audio Guise Task (AGT).

Functions

expose_to_eel()

Expose the AGT API to Python Eel.

expose_to_eel ()
Expose the AGT API to Python Eel.

69

LART Research Client, Release 0.4.0

Modules
research_client.agt.dataschema Data schema implementing the AGT.
research_client.agt.eel Exposes the AGT to Python Eel.
research_client.agt.patterns Additional validation patterns for AGT.
research_client.agt.versions Version implementations and translations for the AGT.

research_client.agt.dataschema

Data schema implementing the AGT.

Classes

Response Class for representing the data of an AGT questionnaire
response.

class Response
Bases: DataSchema
Class for representing the data of an AGT questionnaire response.
__init__(id_=None)
Instantiates a new LSBQ-RML response object.

Parameters
id_ (Optional[str])

generate_trial_order (fillers=None, speakers=None, languages=None, sep="_")

Produce a pseudo-randomised AGT presentation order.

Given four speakers, four fillers, and two languages, produce a presentation order for Matched Guise Task,
based on the following grid:

Speaker | Language | Example

F1 Either Filler 1

S1 L1 Speaker 1, Language 1
S2 L2 Speaker 2, Language 2
F2 Either Filler 2

S3 L2 Speaker 3, Language 2
S4 L1 Speaker 4, Language 1
F3 Either Filler 3

S1 L2 Speaker 1, Language 2
S2 L1 Speaker 2, Language 1
F4 Either Filler 4

S3 L1 Speaker 3, Language 1
S4 L2 Speaker 4, Language 2

The function randomises:
(a) the order of the fillers (regardless of filler language),

(b) the order in which speakers are presented (distance kept constant)

70 Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

(c) whether L1 or L2 are presented first (keeping alternation constant)
Return type

tuple[str, ...]
Parameters

e fillers (Optional[list[str]])

e speakers (Optional[list[str]])

¢ languages (Optional[list[str]])

* sep (str)

getratings(trial)
Get the ratings for the trial labelled by trial.

Return type
dict[str, float]

Parameters
trial (str)

setratings(trial, ratings)
Set the ratings for the trial labelled by trial.

Parameters
e trial (str)

e ratings (dict[str, float])

5.1. Backend API (Python) 71

LART Research Client, Release 0.4.0

72

__schema = {'fl_ratings': {'ambitious': {'constraint': (0, 100), 'type_': <class
'float'>, 'typedesc': 'rating of ambitious'}, 'amusing': {'constraint': (0, 100),
'type_': <class 'float'>, 'typedesc': 'rating of amusing'}, 'attractive':
{'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of
attractive'}, 'competent': {'constraint': (0, 100), 'type_': <class 'float'>,
'typedesc': 'rating of competent'}, 'cool': {'constraint': (0, 100), 'type_':
<class 'float'>, 'typedesc': ‘'rating of cool'}, 'educated': {'constraint': (0,
100), 'type_': <class 'float'>, 'typedesc': 'rating of educated'}, 'friendly':
{'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of
friendly'}, 'honest': {'constraint': (0, 100), 'type_': <class 'float'>,
'typedesc': 'rating of honest'}, 'ignorant': {'constraint': (0, 100), 'type_':
<class 'float'>, 'typedesc': ‘'rating of ignorant'}, 'influential': {'constraint':
(®, 100), 'type_': <class 'float'>, 'typedesc': 'rating of influential'},
'intelligent': {'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc':
'rating of intelligent'}, 'international': {'constraint': (0, 100), 'type_':
<class 'float'>, 'typedesc': 'rating of international'}, 'likeable':
{'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of
likeable'}, 'matural': {'constraint': (0, 100), 'type_': <class 'float'>,
'typedesc': 'rating of natural'}, 'open-minded': {'constraint': (0, 100),
"type_': <class 'float'>, 'typedesc': 'rating of open-minded'}, 'polite':
{'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of
polite'}, 'pretentious': {'constraint': (0, 100), 'type_': <class 'float'>,
'typedesc': 'rating of pretentious'}, 'trustworthy': {'constraint': (0, 100),
'type_': <class 'float'>, 'typedesc': 'rating of trustworthy'}}, 'f2_ratings':
{'ambitious': {'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc':
'rating of ambitious'}, 'amusing': {'constraint': (0, 100), 'type_': <class
'float'>, 'typedesc': 'rating of amusing'}, 'attractive': {'constraint': (O,
100), 'type_': <class 'float'>, 'typedesc': 'rating of attractive'}, 'competent':
{'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of
competent'}, 'cool': {'constraint': (0, 100), 'type_': <class 'float'>,
'typedesc': 'rating of cool'}, 'educated': {'constraint': (0, 100), 'type_':
<class 'float'>, 'typedesc': ‘'rating of educated'}, 'friendly': {'constraint':
(0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of friendly'}, 'honest':
{'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of
honest'}, 'ignorant': {'constraint': (®, 100), 'type_': <class 'float'>,
'typedesc': 'rating of ignorant'}, 'influential': {'constraint': (0, 100),
'"type_': <class 'float'>, 'typedesc': 'rating of influential'}, 'intelligent':
{'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of
intelligent'}, 'international': {'constraint': (0, 100), 'type_': <class
'float'>, 'typedesc': 'rating of international'}, 'likeable': {'constraint': (0,
100), 'type_': <class 'float'>, 'typedesc': 'rating of likeable'}, 'natural':
{'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of
natural'}, 'open-minded': {'constraint': (0, 100), 'type_': <class 'float'>,
'typedesc': 'rating of open-minded'}, 'polite': {'constraint': (O, 100), 'type_':
<class 'float'>, 'typedesc': ‘'rating of polite'}, 'pretentious': {'constraint':
(0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of pretentious'},
"trustworthy': {'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc':
'rating of trustworthy'}}, 'f3_ratings': {'ambitious': {'constraint': (0, 100),
'type_': <class 'float'>, 'typedesc': 'rating of ambitious'}, 'amusing':
{'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of
amusing'}, 'attractive': {'constraint': (0, 100), 'type_': <class 'float'>,
'typedesc': 'rating of attractive'}, 'competent': {'constraint': (0, 100),
"type_': <class 'float'>, 'typedesc': 'rating of competent'}, 'cool':
{'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of cool'},
'educated’': {'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc':

v v v = v v, V. <class

"float'>, 'typedesc': 'rating of friendly'}, 'honest': QGhaptetBaifdPl:Dogyymeggation
"type_': <class 'float'>, 'typedesc': 'rating of honest'}, 'ignorant':
{'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of
ignorant'}, 'influential': {'constraint': (0, 100), 'type_': <class 'float'>,

LART Research Client, Release 0.4.0

Type: dict

research_client.agt.eel

Exposes the AGT to Python Eel.

Functions

discard(instid)

Discards a Response.

end(instid[, data])

Redirect participant in right sequence after AGT end
screen.

get_traits()

Return the list of AGT stimuli.

getmissing(instid) Gets a list of missing fields.
getversions() Retrieves the available versions of the AGT.
init(data) Initialises a new AGT Response.
iscomplete(instid) Checks whether a Response is complete.

load_version(instid, sections)

Load specified sections of an AGT version implementa-
tion.

setratings(instid, data)

Adds the ratings for a given trial and redirects to the next
trial.

store(instid)

Submits a (complete) Response for long-term storage.

expose (func)

Wraps, renames and exposes a function to eel.

Return type

TypeVar(F, bound= Callable][.. ., Any])

Parameters
func (F)

_getinstance (instid)

Return type
Response

Parameters
instid (str)

_getnexttrial (instid, current_trial)

Return the trial following current_trial on an AGT Response.

Return type
Optional[str]

Parameters

e instid (str)
e current_trial (str)

_handleexception(exc)

Passes exception to exceptionhandler if defined, otherwise continues raising.

5.1. Backend API (Python)

73

LART Research Client, Release 0.4.0

Return type
None

Parameters
exc (Exception)

discard (instid)

Discards a Response.

Return type
bool

Parameters
instid (str)

end (instid, data=None)

Redirect participant in right sequence after AGT end screen.

Return type
str

Parameters
e instid (str)
e data (Optional [dict[str, str]])
get_traits(Q)
Return the list of AGT stimuli.
getmissing(instid)
Gets a list of missing fields.

Return type
list[str]

Parameters
instid (str)

getversions()
Retrieves the available versions of the AGT.

Return type
dict[str, str]

init (data)
Initialises a new AGT Response.

Return type
str

Parameters
data (dict[str, Any])

iscomplete (instid)
Checks whether a Response is complete.

Return type
bool

Parameters
instid (str)

74

Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

load_version (instid, sections)

Load specified sections of an AGT version implementation.

Return type
dict[str, dict[str, Any]]

Parameters
e instid (str)
e sections (list[str])

setratings (instid, data)
Adds the ratings for a given trial and redirects to the next trial.

Return type
None

Parameters
e instid (str)
e data (dict[str, str])

store (instid)
Submits a (complete) Response for long-term storage.

Return type
bool

Parameters
instid (str)

F = TypeVar(F, bound=Callable)
Type: TypeVar
Invariant TypeVar bound to typing.Callablel..., typing.Any].

research_client.agt.patterns

Additional validation patterns for AGT.

research_client.agt.versions

Version implementations and translations for the AGT.

_get_versions()
Loads all available AGT versions into memory.

Return type
dict[str, dict[str, Any]]

5.1. Backend API (Python) 75

LART Research Client, Release 0.4.0

5.1.2 research_client.app

LART Research Client App.

An app to collect survey-type data for research on regional and minority languages, developed by the Language Attitudes
Research Team at Bangor University.

Functions
atol_rating(data) Retrieve atol rating and print to screen.
close(page, opensockets) Callback when an app socket is closed.
export_data_backup() Non-blocking eel wrapper for the app's
export_backup () function.
main() App main function called on app launch.
shutdown([sig, frame]) Shut down the app.

atol_rating(data)

Retrieve atol rating and print to screen.

Parameters
data (dict [Any, Any])

close(page, opensockets)
Callback when an app socket is closed.

Parameters
e page (str)
e opensockets (1ist[Any])

export_data_backup()
Non-blocking eel wrapper for the app’s export_backup () function.

main()

App main function called on app launch.

shutdown (sig=None, frame=None)
Shut down the app.

5.1.3 research_client.atolc

Data structures for the AToL Questionnaire (RML).

76 Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

Functions

alphabetise(dictionary)

Return a dict in alphabetised order.

arrange_data(data)

Orders data so that meta info is consistent with other
tasks in the app.

arrange_order(dict, source)

Records order in which traits were presented for a given
trial, then orders them alphabetically for write readabil-

ity

atol_c_get_items(version)

Get label pairs for each AToL item depending on lan-
guage selection.

atol_end(data)

Redirect participant in right sequence after AToL-C end
screen.

fetch_location(source_file, version)

Finds which html page to load next.

get_id(dict)

Returns a participant ID

grab_atol_ratings(myData, source, ...)

Does the same as init_atol, but for ratings

init_atol(myData)

Retrieves initial info from index.html and prints to file &
to terminal.

key_1list(dic)

Return the keys of a dictionary.

randomize(dictionary)

Return a dict in randomized order.

Classes

Response

Class for representing the data of an LSBQ-RML ques-
tionnaire response.

class Response
Bases: DataSchema

Class for representing the data of an LSBQ-RML questionnaire response.

__init__(id_=None)

Instantiates a new LSBQ-RML response object.

Parameters
id_(Optional[int])

setmeta(data)

Sets the metadata for the response.

Return type
None

Parameters
data (dict[str, Any])

5.1. Backend API (Python)

77

LART Research Client, Release 0.4.0

__schema = {'id': {'constraint': (0, 9223372036854775807), 'type_': <class
'int'>, 'typedesc': 'LSBQ-RML Response ID'}, 'languagel': {'ambiguous':
{'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of
ambiguous'}, 'appealing': {'constraint': (0, 100), 'type_': <class 'float'>,
'typedesc': 'rating of appealing'}, 'ballsy': {'constraint': (0, 100), 'type_':
<class 'float'>, 'typedesc': ‘'rating of ballsy'}, 'beautiful': {'constraint': (0,
100), 'type_': <class 'float'>, 'typedesc': 'rating of beautiful'}, 'elegant':
{'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of
elegant'}, 'flowing': {'constraint': (0, 100), 'type_': <class 'float'>,
'typedesc': 'rating of flowing'}, 'fluent': {'constraint': (0, 100), 'type_':
<class 'float'>, 'typedesc': ‘'rating of fluent'}, 'graceful': {'constraint': (O,
100), 'type_': <class 'float'>, 'typedesc': ‘'rating of graceful'}, 'logical':
{'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of
logical'}, 'pleasant': {'constraint': (0, 100), 'type_': <class 'float'>,
'typedesc': 'rating of pleasant'}, 'precise': {'constraint': (0, 100), 'type_':
<class 'float'>, 'typedesc': ‘'rating of precise'}, 'round': {'constraint': (0,
100), 'type_': <class 'float'>, 'typedesc': 'rating of round'}, 'smooth':
{'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of
smooth'}, 'soft': {'constraint': (O, 100), 'type_': <class 'float'>, 'typedesc':
'rating of soft'}, 'structured': {'constraint': (0, 100), 'type_': <class
'float'>, 'typedesc': 'rating of structured'}, 'systematic': {'constraint': (0,
100), 'type_': <class 'float'>, 'typedesc': ‘'rating of systematic'}}, 'language2':
{'ambiguous': {'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc':
'rating of ambiguous'}, 'appealing': {'constraint': (0, 100), 'type_': <class
'float'>, 'typedesc': 'rating of appealing'}, 'ballsy': {'constraint': (0, 100),
"type_': <class 'float'>, 'typedesc': 'rating of ballsy'}, 'beautiful’:
{'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of
beautiful'}, 'elegant': {'constraint': (0, 100), 'type_': <class 'float'>,
'typedesc': 'rating of elegant'}, 'flowing': {'constraint': (0, 100), 'type_':
<class 'float'>, 'typedesc': ‘'rating of flowing'}, 'fluent': {'constraint': (O,
100), 'type_': <class 'float'>, 'typedesc': 'rating of fluent'}, 'graceful':
{'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of
graceful'}, 'logical': {'constraint': (0, 100), 'type_': <class 'float'>,
'typedesc': 'rating of logical'}, 'pleasant': {'constraint': (0, 100), 'type_':
<class 'float'>, 'typedesc': ‘'rating of pleasant'}, 'precise': {'constraint': (0,
100), 'type_': <class 'float'>, 'typedesc': 'rating of precise'}, 'round':
{'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc': 'rating of
round'}, 'smooth': {'constraint': (0, 100), 'type_': <class 'float'>, 'typedesc':
'rating of smooth'}, 'soft': {'constraint': (0, 100), 'type_': <class 'float'>,
'typedesc': 'rating of soft'}, 'structured': {'constraint': (0, 100), 'type_':
<class 'float'>, 'typedesc': 'rating of structured'}, 'systematic': {'constraint':
(0, 100), 'type_': <class 'float'>, 'typedesc': ‘'rating of systematic'l}}, 'meta':
{'consent': {'constraint': ({'on', True, 'yes', 'l', 'true'}, {False, 'no', 'off',
'0', 'false'}), 'type_': typing.Union[tuple[typing.Iterable[typing.Any],
typing.Iterable[typing.Any]], list[typing.Iterable[typing.Any]]], 'typedesc':
'consent confirmation'}, 'date': {'constraint':
'[0-91{1,43\\-(0?[1-9]11[0-2]1)\\-(07[1-9]|[12][06-9]13[01])', 'type_': <class
'str'>, 'typedesc': 'current date'}, 'participant_id': {'constraint':
'[A-Za-z0-9]{3,10}', 'type_': <class 'str'>, 'typedesc': 'Participant ID'},
'research_location': {'constraint': "[\\w,' \\Q\\)\\.\\-1{1,50}", "type_': <class
'str'>, 'typedesc': 'location name'}, 'researcher_id': {'constraint':
'[A-Za-z0-9]{3,10}', 'type_': <class 'str'>, 'typedesc': 'Researcher ID'},
'version': {'constraint': '\\w{13,17}', 'type_': <class 'str'>, 'typedesc':
'LSBQ-RML version identifier'}}}

78

Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

Type: dict
_atol_getversions()

Retrieves the available versions of the AToL.

Return type
dict[str, str]

alphabetise (dictionary)

Return a dict in alphabetised order.

Return type
dict[str, Any]

Parameters
dictionary (dict[str, Any])

arrange_data(data)

Orders data so that meta info is consistent with other tasks in the app.

arrange_order (dict, source)

Records order in which traits were presented for a given trial, then orders them alphabetically for write readability

atol_c_get_items (version)

Get label pairs for each AToL item depending on language selection.

Return type

Optional[dict[str, tuple[str, str]]]

Parameters
version (str)

atol_end(data)

Redirect participant in right sequence after AToL-C end screen.

Return type
str

Parameters
data (dict[str, str])

fetch_location(source._file, version)
Finds which html page to load next.

Return type
Optional[str]

Parameters
e source_file (str)
e version (str)

get_id(dict)

Returns a participant ID

grab_atol_ratings (myData, source, version_id, partld, versN)

Does the same as init_atol, but for ratings
Parameters

e myData (dict[Any, Any])

5.1. Backend API (Python)

79

LART Research Client, Release 0.4.0

* source (str)

e version_id (str)

partId (str)
» versN (str)

init_atol (myData)

Retrieves initial info from index.html and prints to file & to terminal.

Return type
None

Parameters

myData (dict[str, str])

key_list(dic)

Return the keys of a dictionary.

Return type
Iterable[Any]

Parameters
dic (dict[str, Any])

randomize (dictionary)

Return a dict in randomized order.

Return type
dict[str, Any]

Parameters

dictionary (dict[str, Any])

Modules

research_client.atolc.patterns

Additional validation patterns for AToL-C.

research_client.atolc.testPyt

research_client.atolc.versions

dict() -> new empty dictionary dict(mapping) -> new
dictionary initialized from a mapping object's (key,
value) pairs dict(iterable) -> new dictionary initialized as
if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs)
-> new dictionary initialized with the name=value pairs
in the keyword argument list. For example: dict(one=1,
two=2).

80

Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

research_client.atolc.patterns

Additional validation patterns for AToL-C.

research_client.atolc.testPyt

Functions

atol_test() Get label pairs for each AToL item depending on lan-
guage selection.

atol_test()
Get label pairs for each AToL item depending on language selection.

research_client.atolc.versions

5.1. Backend API (Python) 81

LART Research Client, Release 0.4.0

versions = {'CymEng_Cym_GB': {'adjectives': {'ambiguity': ['diamwys', 'amwys'],
'angularity': ['onglog', 'crwn'], 'appeal': ['apelgar', 'atgas'], 'beauty':
['prydferth', 'hyll'], 'elegance': ['anghywrain', 'cywrain'], 'flow': ['llifo',
'swta'], 'fluency': ['toredig', 'rhugl'], 'grace': ['trwsgl', 'gosgeiddig'],
'harshness': ['llym', 'meddal'], 'logic': ['rhesymegol', 'afresymegol'], 'pleasure':
['dymunol', 'annymunol'], 'precision': ['manwl', 'amhendant'], 'sistem': ['trefnus',
'di-drefn'], 'smoothness': ['llyfn', 'cryg']l, 'structure': ['distrwythur',
'strwythuredig']}, 'intface_info': {'atol_header': 'Holiadur AToL', 'btn_text':
'Nesaf', 'instruction': 'Defnyddiwch y llythrydd i ateb', 'language': 'Saesneg',
'language_header': 'Mae’r Saesneg yn...', 'next_task': 'Cliciwch <i>Parhau</i> pan
fyddwch yn barod', 'rml': 'Cymraeg', 'rml_header': 'Mae’r Gymraeg yn...', 'thank_you':
"Diolch am lenwi'r holiadur!", 'title': 'Holiadur Iaith'}, 'meta': {'author': 'Ianto
Gryffudd <ianto.gryffudd@bangor.ac.uk>, Marco Tamburelli <m.tamburelli@bangor.ac.uk>',
'date': '2023-01-30', 'versionId': 'CymEng_Cym_GB', 'versionName': 'Cymraeg - Saesneg
(UK)', 'versionNumber': '0.3.4'}}, 'CymEng_Eng GB': {'adjectives': {'ambiguity':
['unambiguous', 'ambiguous'], 'angularity': ['angular', 'round'], 'appeal':
['appealing', 'abhorrent'], 'beauty': ['beautiful', 'ugly'], 'elegance': ['inelegant',
'elegant'], "flow': ['flowing', 'abrupt'], 'fluency': ['choppy', 'fluent'], 'grace':
['clumsy', 'graceful'], 'harshness': ['harsh', 'soft'], 'logic': ['logical',

'illogical'], 'pleasure': ['pleasant', 'unpleasant'], 'precision': ['precise',
'vague'], 'sistem': ['systematic', 'unsystematic'], 'smoothness': ['smooth', 'raspy'l],
'structure': ['unstructured', 'structured']}, 'intface_info': {'atol_header': 'AToL
Questionnaire', 'btn_text': 'Next', 'instruction': 'Please move the slider to record
your choice.', 'language': 'English', 'language_header': 'The English language is...',
'next_task': "Please click <i>Continue</i> when you're ready", 'rml': 'Welsh',
'rml_header': 'The Welsh language is...', 'thank_you': 'Thank you for completing the
questionnaire!', 'title': 'Language Questionnaire'}, 'meta': {'author': 'Marco
Tamburelli <m.tamburelli@bangor.ac.uk>', 'date': '2023-01-16', 'versionId':
'CymEng_Eng_GB', 'versionName': 'English - Welsh (United Kingdom)', 'versionNumber':

'0.3.4"'}}, 'EngZzz_Eng_GB': {'adjectives': {'ambiguity': ['unambiguous', 'ambiguous'],
'angularity': ['angular', 'round'], 'appeal': ['appealing', 'abhorrent'], 'beauty':
['beautiful', 'ugly'], 'elegance': ['inelegant', 'elegant'], 'flow': ['flowing',
'abrupt'], 'fluency': ['choppy', 'fluent'], 'grace': ['clumsy', 'graceful'],
'harshness': ['harsh', 'soft'], 'logic': ['logical', 'illogical'], 'pleasure':
['pleasant', 'unpleasant'], 'precision': ['precise', 'vague'], 'sistem': ['systematic',
'unsystematic'], 'smoothness': ['smooth', 'raspy'], 'structure': ['unstructured',
'structured']}, 'intface_info': {'atol_header': 'AToL Questionnaire', 'btn_text':
'Next', 'instruction': 'Please move the slider to record your choice.', 'language':
'English', 'language_header': 'The English language is...', 'next_task': "Please click
<i>Continue</i> when you're ready"”, 'rml': '[ENTER language name HERE]', 'rml_header':
'[ENTER language name HERE] language is...', 'thank_you': 'Thank you for completing the
questionnaire!', 'title': 'Language Questionnaire'}, 'meta': {'author': 'Marco
Tamburelli <m.tamburelli@bangor.ac.uk>', 'date': '2023-01-16', 'versionId':
'EngZzz_Eng_GB', 'versionName': 'English - generic (United Kingdom)', 'versionNumber':
'0.3.4"'}}, 'LmoIta_Ita_IT': {'adjectives': {'ambiguity': ['chiaro', 'ambiguo'],
'angularity': ['spigoloso', 'arrotondato'], 'appeal': ['attraente', 'ripugnante'],
'beauty': ['bello’', 'brutto'], 'elegance': ['non elegante', 'elegante'], 'flow':
['fluido', 'brusco'], 'fluency': ['frammentato', 'scorrevole'], 'grace': ['goffo',
'aggraziato'], 'harshness': ['duro', 'morbido'], 'logic': ['logico', 'illogico'],
'pleasure': ['piacevole', 'spiacevole'], 'precision': ['preciso', 'vago'], 'sistem':
['sistematico', 'mon sistematico'], 'smoothness': ['liscio', 'ruvido'], 'structure':
['non strutturato', 'strutturato'l}, 'intface_info': {'atol_header': 'Questionario
sulle varieta linguistiche', 'btn_text': 'Avanti', 'instruction': 'Si prega di spostare
il cursore per registrare la propria scelta.', 'language': 'Italiano',

pN "

'language_header': "A mio avviso, 1l'italiano é...", 'next_task': 'Si prega di cliccare

88mbardo é...', 'thank_you': 'Grazie per aver completato il duvlapien8ri8Pl Doguimentation
'AToL - RML'}, 'meta': {'author': 'Marco Tamburelli <m.tamburelli@bangor.ac.uk>',
'date': '2023-01-30', 'versionId': 'LmoIta_Ita_IT', 'versionName': 'Italian - Lombard
(Italy)', 'versionNumber': '0.3.4'}}, 'LtzGer_Ger_BE': {'adjectives': {'ambiguity':

LART Research Client, Release 0.4.0

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s

(key, value) pairs

dict(iterable) -> new dictionary initialized as if via:
d = {} for k, v in iterable:
dlk]=v

dict(**kwargs) -> new dictionary initialized with the name=value pairs
in the keyword argument list. For example: dict(one=1, two=2)

5.1.4 research_client.booteel

Utilities to work with Python Eel and Bootstrap.

Functions

buildquery(params) Build a URL query string based on a set of key-value
pairs of parameters.

displayexception(exc) Display an exception as a dismissable client-side boot-
strap modal.

modal(title, body[, options, primary, ...]) Display a client-side modal via bootstrap.

setlocation(location) Direct the user to a new address.

setloglevel(level) Set the log level for the booteel module in both Python

and JavaScript.

_booteel_handlemodal (modal_id, choice)

Parameters
e modal_id (str)
e choice (str)

_booteel_log(level, message, args)

Expose logging interface to booteel.js.
Parameters
e level (int)
* message (str)
e args (1ist[Any])
_booteel_logger_getlevel

Grant access to the module’s loglevel to booteel.js.

buildquery (params)
Build a URL query string based on a set of key-value pairs of parameters.

Return type
str

Parameters
params (dict[str, str])

5.1. Backend API (Python) 83

LART Research Client, Release 0.4.0

displayexception(exc)

Display an exception as a dismissable client-side bootstrap modal.

Parameters
exc (Exception)

modal (title, body, options=None, primary='ok', dismissable=True, callback=None, icon=None)

Display a client-side modal via bootstrap.

Return type
str

Parameters
e title (str)
e body (str)
e options (Optional [dict[str, str]])
e primary (str)
e dismissable (bool)

callback (Optional[Callable[[str, str], bool]])

e icon (Optional[str])

setlocation (location)
Direct the user to a new address.

Parameters
location (str)

setloglevel (level)
Set the log level for the booteel module in both Python and JavaScript.

Parameters
level (int)

5.1.5 research_client.conclusion

Conclusion screen for end of task series.
This module implements a configurable screen for the conclusion of a task or series of tasks in the Research Client app.

The functionality provided does not implement any data models, but simply provides text in different language versions
which can be used to indicate to a user that they have reached the end of their assigned tasks in the app.

This is nicer than just sending the user straight back to the home screen of the app, which might not provide sufficient
closure to leave the user confident that everything was successfully concluded.

84 Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

Functions

expose_to_eel()

Expose the Conclusion screen API to Python Eel.

expose_to_eel ()

Expose the Conclusion screen API to Python Eel.

Modules

research_client.conclusion.eel

Exposes the Conclusion screen to Python Eel.

research_client.conclusion.versions

Version implementations and translations for the conclu-
sion screen.

research_client.conclusion.eel

Exposes the Conclusion screen to Python Eel.

Functions

end(version_id)

Redirect following sequence logic after conclusion
screen ends.

getversions() Retrieves the available versions of the Conclusion
screen.
init(data) Initialises a new Conclusion screen instance.

load_version(version_id, sections)

Load specified sections of a Conclusion screen version
implementation.

_expose (func)
Wraps, renames and exposes a function to eel.

Return type

TypeVar(F, bound= Callable[.. ., Any])

Parameters
func (F)

_handleexception(exc)

Passes exception to exceptionhandler if defined, otherwise continues raising.

Return type
None

Parameters
exc (Exception)

end (version_id)

Redirect following sequence logic after conclusion screen ends.

Return type
bool

5.1. Backend API (Python)

85

LART Research Client, Release 0.4.0

Parameters
version_id (str)

getversions()
Retrieves the available versions of the Conclusion screen.

Return type
dict[str, str]

init (data)

Initialises a new Conclusion screen instance.

Return type
str

Parameters
data (dict[str, Any])

load_version (version_id, sections)

Load specified sections of a Conclusion screen version implementation.

Return type
dict[str, dict[str, Any]]

Parameters
e version_id (str)
e sections (list[str])
F = TypeVar(F, bound=Callable)
Type: TypeVar
Invariant TypeVar bound to typing.Callablel[..., typing.Any].

research_client.conclusion.versions

Version implementations and translations for the conclusion screen.

_get_versions()
Loads all available conclusion screen versions into memory.

Return type
dict[str, dict[str, Any]]

5.1.6 research_client.config

Configuration handler for LART Research Client.

This package provides an API to read, modify, and store app configuration. The configuration is stored in a JSON
file and relevant paths (unless explicitly specified) are determined based on the Operating System (using the AppDirs
package).

The configuration package only exposes the actual interface to the configuration, which is done via the singleton config

object, an instantiation of the Config class.

To access and/or modify the configuration of the running app, you should import only config. The other classes and
objects in the package will not typically be needed, perhaps with the exceptions of functions that deal with system
updates and the like (as for instance the functionality in the research_client.utils module).

86 Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

Example

Let’s imagine you want to ensure that the shutdown_delay setting is always at least three seconds. The following
example shows how you would load the current app configuration, check the current value, and if it is below the
threshold increase it to 3.00 and then save the modified configuration (so that it will persist when the app is restarted):

from .config import config

if config.shutdown_delay < 3.00:
config.shutdown_delay = 3.00
config.save()

Module Attributes

config The default configuration object for the app.
Classes

Config Class for keeping track of App configuration data.

DataclassDictMixin Mixin adding asdict() and fromdict() methods to a data-
class.

DataclassDocMixin Mixin adding a getdocs() method to a dataclass.

JSONPathEncoder JSON Encoder capable of serialising pathlib Path ob-
jects.

Logging Class for Logging configuration.

Paths Class for configuration of App paths.

Sequences Class for app-task sequencing configuration.

class Config

Bases: DataclassDictMixin, DataclassDocMixin
Class for keeping track of App configuration data.

__init__(logging=Logging(max_files=10, default_level=30, stream_format='{levelname}:{name):
{message}’, file_format='[{asctime} {levelname:<8} {name}] {message}'),
paths=Paths(config=PosixPath('/home/docs/.config/Research_Client'),
data=PosixPath('/home/docs/.local/share/Research_Client/Data’),
logs=PosixPath('/home/docs/.local/state/Research_Client/log’),
cache=PosixPath('/home/docs/.cache/Research_Client')), sequences=Sequences(agt=",
atolc="memorygame’, conclusion="", consent="lsbq’, Isbq="atolc', memorygame=""),
shutdown_delay=2.0)

Parameters
* logging (Logging)
¢ paths (Paths)
* sequences (Sequences)
¢ shutdown_delay (float)

Return type
None

5.1. Backend API (Python) 87

LART Research Client, Release 0.4.0

classmethod load(filename='"settings.json")

Load configuration from a file or return default Config().

Return type
Config

Parameters
filename (str)

save (filename='settings.json")
Save configuration to a file.

Parameters
filename (str)

appauthor = 'L’ART'

Type: str
appname = 'Research Client'
Type: str

appversion = '0.3.4'
Type: str

logging = Logging(max_files=10, default_level=30, stream_format='{levelname}:{name}:
{message}', file_format='[{asctime} {levelname:<8} {name}] {message}')

Type: Logging

paths = Paths(config=PosixPath('/home/docs/.config/Research_Client'),
data=PosixPath('/home/docs/.local/share/Research_Client/Data’'),
logs=PosixPath('/home/docs/.local/state/Research_Client/log'),
cache=PosixPath(' /home/docs/.cache/Research_Client'))

Type: Paths

sequences = Sequences(agt='"', atolc="memorygame', conclusion='"', consent='lsbq',
1sbg="atolc', memorygame='")

Type: Sequences

shutdown_delay = 2.0
Type: float

class DataclassDictMixin

Bases: object
Mixin adding asdict() and fromdict() methods to a dataclass.

asdict()
Return a deep copy of the dataclass as a dictionary.

Return type
dict[str, Any]

classmethod fromdict(d, ignorefaults=False)

Recursively converts a dictionary to a dataclass instance.
Parameters
e d(dict[str, Any])

e ignorefaults (bool)

88 Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

class DataclassDocMixin
Bases: object

Mixin adding a getdocs() method to a dataclass.

This enables adding additional documentation to dataclass fields using the field’s metadata property. The fol-
lowing metadata properties are read by the DataclassDocMixin:

* doc_label: A human-friendly label/short description of a field.
e doc_help: A human-friendly explanation of what a field does / why it’s there.

* doc_values: A dictionary of label-value pairs, which can be used to give an indication of specific values
the field can take and what they mean.

getdocs (recurse=True, include_undocumented=False)

Return a dictionary with documentation for the dataclass’s fields.
Parameters

e recurse (bool, default: True) — Whether to also fetch the field-docs for fields that are
dataclasses.

¢ include_undocumented (bool, default: False) — Whether to include fields that do not
have at least doc_label assigned in their metadata.

Return type
tuple[list[dict[str, Any]], list[dict[str, Any]]]

Returns: A two-tuple, where the first member is a list of dataclass

fields, the second member a list of non-dataclass fields. Each list contains a dictionary with information
about the field.

class]JSONPathEncoder
Bases: JSONEncoder

JSON Encoder capable of serialising pathlib Path objects.

default (o)
Encodes pathlib Path objects as strings, otherwise uses default JSONEncoder.

Parameters
o (Any)
class Logging
Bases: DataclassDictMixin, DataclassDocMixin

Class for Logging configuration.

__init__(max_files=10, default_level=30, stream_format='{levelname)}:{namej}: {message}’,
file_format='[{asctime} {levelname:<8)} {name}] {message}")

Parameters
e max_files (int)
e default_level (int)
e stream_format (str)
e file_format (str)

Return type
None

5.1. Backend API (Python) 89

LART Research Client, Release 0.4.0

—_get_file_path(name, path)
Determine log file path and clear old log files.

Scans path for logfiles named after name (name*_.1og). If there are more than config.logging.max_files - 1,
removes the oldest until that value is reached, and returns a path to a new log file (without creating it yet).

Return type
Path

Parameters
* name (str)
e path (Path)

get_file_handler (name, path=None)
Return a logging.FileHandler object for logging.

Return type
FileHandler

Parameters
* name (str)
e path (Optional [Union[Path, str]])

get_stream_handler (stream=None)
Return a logging.StreamHandler object for logging.

Parameters
stream (Any)

Return type
logging.StreamHandler[Any]

default_level = 30

Type: int
file_format = '[{asctime} {levelname:<8} {name}] {message}'
Type: str
max_files = 10
Type: int
stream_format = '{levelname}:{name}: {message}'
Type: str

class Paths
Bases: DataclassDictMixin, DataclassDocMixin

Class for configuration of App paths.

__init__(data=PosixPath('/home/docs/.local/share/Research_Client/Data’),
logs=PosixPath(’/home/docs/.local/state/Research_Client/log’),
cache=PosixPath('/home/docs/.cache/Research_Client'))

Parameters
e data (Path)
¢ logs (Path)
¢ cache (Path)

90 Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

Return type
None

cache = PosixPath('/home/docs/.cache/Research_Client')

Type: Path

config = PosixPath('/home/docs/.config/Research_Client')
Type: Path

data = PosixPath('/home/docs/.local/share/Research_Client/Data"')
Type: Path

logs = PosixPath('/home/docs/.local/state/Research_Client/log"')
Type: Path

class Sequences

Bases: DataclassDictMixin, DataclassDocMixin
Class for app-task sequencing configuration.

__init__(agt=", atolc="memorygame’, conclusion="", consent='"lsbq', Isbq='atolc', memorygame="")

Parameters
e agt (str)
e atolc (str)
e conclusion (str)
e consent (str)
e 1sbq (str)
e memorygame (str)

Return type
None

_sequence_options = {"AGT': 'agt', 'AToL-C': 'atolc', 'App start screen': ,
'Conclusion Screen': 'conclusion', 'Consent Form': 'consent', 'LSBQe': 'lsbq',
'Memory Task': 'memorygame'}

Type: ClassVar[dict[str, str]]

agt =
Type: str
atolc = 'memorygame'
Type: str
conclusion = "'
Type: str
consent = 'lsbq'
Type: str
1sbq = 'atolc'
Type: str
memorygame = "'
Type: str

5.1. Backend API (Python) 91

LART Research Client, Release 0.4.0

config = Config(appname='Research Client', appauthor='L’ART', appversion='0.3.4',
logging=Logging(max_files=10, default_level=30, stream_format='{levelname}:{name}:
{message}', file_format='[{asctime} {levelname:<8} {name}] {message}'),
paths=Paths(config=PosixPath('/home/docs/.config/Research_Client"'),
data=PosixPath('/home/docs/.local/share/Research_Client/Data'),
logs=PosixPath('/home/docs/.local/state/Research_Client/log'),
cache=PosixPath('/home/docs/.cache/Research_Client')), sequences=Sequences(agt='"",
atolc="memorygame', conclusion='', consent='lsbq', lsbg='atolc', memorygame='"),
shutdown_delay=2.0)

Type: Final[Config]
The default configuration object for the app.

This is an instance of Config loaded from the users’ stored settings upon module initialisation (if available),
otherwise it is populated with (sensible) default values.

When saved with config.save() it will automatically save in the correct file and location depending on the user’s
system and installation type.

5.1.7 research_client.consent

Informed consent from user.

Functions

consent_getversions() loops through the folder [versions] inside [consent] and
finds all unique language versions, regardless of test
type.

fetch_file_info(file) takes a json file and returns info from inside the file
as a list in the form of [version_name, version_ID, ver-
sion_data]

fetch_study_info(filename) takes a filename and returns the json data from that file

record_consent(data) Takes in data from index.html and prints it to file && to
console.

set_options(selected_version) Takes a language version as arg and finds all consent

forms available for that version.

consent_getversions()
loops through the folder [versions] inside [consent] and finds all unique language versions, regardless of test type.
Returns a list of lists in the form: [versionld, languagelnfo]
fetch_file_info(file)
takes a json file and returns info from inside the file as a list in the form of [version_name, version_ID, ver-
sion_data]
Parameters
file (str)
fetch_study_info (filename)
takes a filename and returns the json data from that file

Parameters
filename (str)

92 Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

record_consent (data)

Takes in data from index.html and prints it to file && to console.

Parameters
data (dict [Any, Any])

set_options (selected_version)

Takes a language version as arg and finds all consent forms available for that version. Returns a list in the form
of [version_name, version_ID, version_data]

Parameters
selected_version (str)

Modules

research_client.consent.versions

research_client.consent.versions

5.1.8 research_client.datavalidator

Simple data validation tools.

This package contains a set of classes providing a simple interface for data validation and validation-based user feedback
via Validator objects.

Modules
research_client.datavalidator.exceptions Exceptions for the datavalidator package.
research_client.datavalidator.patterns Patterns/ranges/enums/etc.
research_client.datavalidator.schemas Prototypes to conveniently define data classes with built-
in validation.
research_client.datavalidator. types Type definitions for the datavalidator package.
research_client.datavalidator.validation Validation tools for the datavalidator package.

research_client.datavalidator.exceptions

Exceptions for the datavalidator package.

5.1. Backend API (Python) 93

LART Research Client, Release 0.4.0

Exceptions

DataValidationError Exception raised when one or more data validations have
failed.

exception DataValidationError

Bases: Exception
Exception raised when one or more data validations have failed.

__init__(message, validator)

Constructs a new DataValidationError exception.
Parameters
* message (str) — The message to be shown to the user.

e validator (Validator) — The list of the ValidationResults that have failed validation.

errors
Type: list[ValidationResult]

The list of the ValidationResults that have failed validation.

message
Type: str

The message to be shown to the user.

validator
Type: Validator

The Validator object from which the DataValidationError originated.

research_client.datavalidator.patterns

Patterns/ranges/enums/etc. for validating different common data input types.

research_client.datavalidator.schemas

Prototypes to conveniently define data classes with built-in validation.

94 Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

Classes

CField Defines a manually validated data field for DataSchema
classes.

CFieldList Defines a field containing an arbitrary number of CField
data.

DataField Base class for data schema fields.

DataFieldList Defines a field containing an arbitrary number of
DataField data.

DataGroup Defines a data group for DataSchema classes.

DataSchema Abstract base class to define auto-validating data classes.

VField Defines an auto-validated data field for DataSchema
classes.

VFieldList Defines a field containing an arbitrary number of VField
data.

class CField

Bases: DataField
Defines a manually validated data field for DataSchema classes.
__init__(name, type_, typedesc, vmethod, forcecast=None, required=True)
Instantiates a new CField.
Parameters

e name (str)

* type_ (str)

¢ typedesc (str)

e vmethod (Callable[[Any, Any], Any])

e forcecast (Optional [bool])

e required (bool)

fieldparams = [('name', <class 'str'>, 'The name of the DataField'), ('type.',
typing.Any, 'The data type for the DataField'), ('typedesc', <class 'str'>, 'A
user-intelligible description of the data type'), ('vmethod',
typing.Callable[[typing.Any, typing.Any], typing.Any], 'A callable accepting a two
arguments: the first is the type_ of the DataField and the second the value. The
callable should raise either a TypeError or a DataValidationError if the value is
invalid, and must return a (possibly processed) version of the value it was passed
which fits the type_ it was passed.'), ('forcecast', typing.Optional[bool], 'Whether
to force casting of data during validation', None), ('required', <class 'bool'>,
'Whether the field is required', True)]

Type: list[Union[tuple[str, Any, str], tuple[str, Any, str, Any]]]
forcecast

Type: Optional[bool]
vmethod

Type: Union[str, Callable[[Any, Any], Any]]

5.1.

Backend API (Python) 95

LART Research Client, Release 0.4.0

class CFieldList
Bases: CField, DataFieldList

Defines a field containing an arbitrary number of CField data.

class DataField

Bases: object
Base class for data schema fields.
To instantiate, use VField, CField, or shorthand notation in a DataSchema declaration.

__init__(name, type_, typedesc, required=True)

Instantiates a new DataField.
Parameters
e name (str)
* type_ (Any)
¢ typedesc (str)
e required (bool)
classmethod fieldparams()
Returns the parameter list for a DataField of this type.

Return type
list[Union[tuple[str, Any, str], tuple[str, Any, str, Any]]]
fieldspecs()
Returns the values for each parameter of the DataField.

Return type
dict[str, Any]

fieldparams = [('name', <class 'str'>, 'The name of the DataField'), ('type.',
typing.Any, 'The data type for the DataField'), ('typedesc', <class 'str'>, 'A
user-intelligible description of the data type'), ('required’', <class 'bool'>,
'Whether the field is required', True)]

Type: list[Union[tuple[str, Any, str], tuple[str, Any, str, Any]]]

name

Type: str
required

Type: bool
type_

Type: Any
typedesc

Type: str

class DataFieldList
Bases: DataField

Defines a field containing an arbitrary number of DataField data.

96 Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

class DataGroup
Bases: object

Defines a data group for DataSchema classes.

__init__ (name, fields)
Instantiates a new DataGroup.

Parameters
e name (str)
e fields (dict[str, Union[DataField, dict[str, Any]]])

getfield(key)
Gets the data field with the name indicated by key.

Return type
Union[dict[str, Any], DataField]

Parameters
key (str)

class DataSchema

Bases: object
Abstract base class to define auto-validating data classes.
@TODO: - __getattr__(self, name) - to retreive data
e _ setattr__(self, name, value) - to set data (with validation)
e _ delattr__(self, name) - to remove/clear a datapoint
e Move some __new___ stuff to __init_subclass__(cls)?
» JSON import/export
__delfieldfactory (fieldname, fieldspecs)

Return type
Callable[[DataSchema], None]

Parameters
e fieldname (str)
o fieldspecs (dict[str, Any])
__delfieldlistfactory (fieldname, fieldspec)

Return type
Callable[[DataSchema], None]

Parameters
¢ fieldname (str)
e fieldspec (dict[str, Any])
__delgroupfactory (gname, fieldspecs)

Return type
Callable[[DataSchema], None]

Parameters

5.1. Backend API (Python)

97

LART Research Client, Release 0.4.0

* gname (str)
e fieldspecs (dict[str, dict[str, Any]])

classmethod __functionalize()

Dynamically creates and attaches methods to get/set values.

Return type
None

__getfieldfactory (fieldname, fieldspecs)

Return type
Callable[[DataSchema], Any]

Parameters
¢ fieldname (str)
e fieldspecs (dict[str, Any])
__getfieldlistfactory (fieldname, fieldspec)

Return type
Callable[[DataSchema], list[Any]]

Parameters
o fieldname (str)
e fieldspec (dict[str, Any])
classmethod __getfieldspecs(key)

Get the specifications for a single DataField or fields in a DataGroup.

Return type
dict[str, dict[str, Any]]

Parameters
key (str)

__getgroupfactory (gname, fieldspecs)

Return type
Callable[[DataSchema], dict[str, Any]]

Parameters
e gname (str)
e fieldspecs (dict[str, dict[str, Any]])

classmethod __index()

Creates a flat list of index keys, separating groups and fields with “/”.

Return type
list[str]

__init__ (forcecast=True, ignorecase=True)

Initialises a new DataSchema object.
Parameters
» forcecast (bool)

e ignorecase (bool)

98

Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

classmethod __materialize()
Creates an empty __data store pre-populated with DataGroups/DataFieldLists.

Return type
dict[str, Union[dict[str, Any], Any]]

static __new__(cls, *args, **kwargs)

Constructs a new DataSchema instance.
Parameters
e args (Any)
¢ kwargs (Any)

classmethod __schematize(schema, schemaname)

Return type
Union[DataGroup, DataField]
Parameters
* schema (Union[DataGroup, dict[str, Union[DataField, dict[str,

Any]]], DataField, dict[str, Any]])
¢ schemaname (str)

__setfieldfactory (fieldname, fieldspec)

Return type
Callable[[DataSchema, Any], None]

Parameters
e fieldname (str)
o fieldspec (dict[str, Any])
__setfieldlistfactory(fieldname, fieldspec)

Return type
Callable[[DataSchema, 1list[Any]], None]

Parameters
e fieldname (str)
e fieldspec (dict[str, Any])

__setgroupfactory (gname, fieldspecs)

Return type
Callable[[DataSchema, dict[str, Any]], None]

Parameters
e gname (str)
e fieldspecs (dict[str, dict[str, Any]])

_autovalidate (vr, fieldspec, value)

Calls the appropriate validation method for fieldspec and value.

Return type
ValidationResult

5.1.

Backend API (Python) 929

LART Research Client, Release 0.4.0

Parameters
e vr (Validator)
o fieldspec (dict[str, Any])
¢ value (Any)

_customvalidate(vr, fieldspec, value)

Calls a custom validation method on value and appends result to vr.

Return type
ValidationResult

Parameters
e vr (Validator)
e fieldspec (dict[str, Any])
¢ value (Any)

_getfield(key)
Gets the field or group addressed by key.

Return type
Union[DataField, DataGroup]

Parameters
key (str)

_getvalue (key)
Gets the value from the data addressed by key.

Return type
Any

Parameters
key (str)

static _isna(value)
Returns True if value is either None or [], False otherwise.

Return type
bool

Parameters
value (Any)

_setvalue (key, value)
Sets the value for the data addressed by key (without validation).

Return type
None

Parameters
¢ key (str)
¢ value (Any)

data(includemissing=Fualse, onlyrequired=False)

Returns the data of the DataSchema as a schematic dictionary.

100

Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

Return type
dict[str, Union[dict[str, Any], Any]]

Parameters
¢ includemissing (bool)
¢ onlyrequired (bool)

iscomplete (onlyrequired=True)

Checks whether the dataset is complete.

Return type
bool

Parameters
onlyrequired (bool)

items (includemissing=False, onlyrequired=False)

Returns a list of key-value pairs for data in the DataSchema.

Return type
list[tuple[str, Any]]

Parameters
¢ includemissing (bool)
e onlyrequired (bool)

keys (includemissing=False, onlyrequired=False)
Returns a list of keys for the DataSchema.

Return type
list[str]

Parameters
¢ includemissing (bool)
e onlyrequired (bool)

missing (onlyrequired=True)

Return a list of keys for missing fields.

Return type
list[str]

Parameters
onlyrequired (bool)

values (includemissing=False, onlyrequired=False)

Returns a list of values for the data in the DataSchema.

Return type
list[Any]

Parameters
¢ includemissing (bool)

e onlyrequired (bool)

5.1.

Backend API (Python)

101

LART Research Client, Release 0.4.0

__data

Type: dict[str,Union[dict[str, Any], Any]]
__keys

Type: list[str]
__schema

Type: dict[str, Union[DataGroup, dict[str, Union[DataField, dict[str, Any]]], DataField,
dict[str, Any]]]

__schematized
Type: bool
forcecast
Type: bool
ignorecase
Type: bool
class VField
Bases: DataField
Defines an auto-validated data field for DataSchema classes.
__init__(name, type_, typedesc, constraint, forcecast=None, ignorecase=None, flags=0, required=True)
Instantiates a new VField.
Parameters
e name (str)
* type_ (str)
¢ typedesc (str)
e constraint (Any)
e forcecast (Optional [bool])
¢ ignorecase (Optional [bool])
e flags (Union[RegexFlag, int])
e required (bool)

fieldparams = [('name', <class 'str'>, 'The name of the DataField'), ('type.',
typing.Any, 'The data type for the DataField'), ('typedesc', <class 'str'>, 'A
user-intelligible description of the data type'), ('constraint', typing.Any, 'A
DataValidator constraint approprite for type_'), ('forcecast’,
typing.Optional[bool], 'Whether to force casting of data during validation', None),
('ignorecase', typing.Optional[bool], 'Whether to ignore case for string-type data
validation', None), ('flags', typing.Union[re.RegexFlag, int], 'Flags to pass to the
regular expression engine if type_ is “str’.', 0), ('required', <class 'bool'>,
'Whether the field is required', True)]

Type: list[Union[tuple[str, Any, str], tuple[str, Any, str, Any]]]
constraint

Type: Any
flags

Type: Union[RegexFlag, int]

102 Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

forcecast
Type: Optional[bool]

ignorecase
Type: Optional[bool]

class VFieldList
Bases: VField, DataFieldList

Defines a field containing an arbitrary number of VField data.

research_client.datavalidator.types

Type definitions for the datavalidator package.

Module Attributes

RangeT Type for inclusive numeric ranges (int or float).

SetT Type for checking whether whether a value is contained
in a set.

PolarT Type for checking whether value falls within a set of po-
lar items.

PatternT Type for regular expression patterns for string matching.

EnumT Type for enumerable checking and valuation.

EnumT

Type for enumerable checking and valuation.

Note: The dictionary keys and values can be any type. If a value repeats for
more than one individual key it will be treated as an alias.

Examples
o {“A”: 1, “B”: 2} will match inputs “A”, 1, “B”, and 2, and cast to either 1 or 2.

PatternT

Type for regular expression patterns for string matching.

Note: In use, a PatternT string will always be annotated with a preceding r”’A”
and a succeeding r°Z” to match the start and end of a string exhaustively.

Examples
e r’w*” will match anything matched by r"Aw*Z”.

PolarT

Type for checking whether value falls within a set of polar items.

5.1. Backend API (Python) 103

LART Research Client, Release 0.4.0

Examples

EEINT3 EEINT3 EEINNT3 i)

* ({“yes”, “on”, “true”}, {“no”, “off”, “false”’}) checks whether a given value is in the set {“yes”, “on”,
“true”} or the set {“no”, “off”, “false”}, and depending on the function might return True for the former
set and False for the latter.

Alias of Union[tuple[Iterable[Any], Iterable[Any]], list[Iterable[Any]]]
RangeT

Type for inclusive numeric ranges (int or float).

Examples

* (1, 10) validates integers and floats 1 through 10 inclusive.

¢ (1.0, 10.0) same as (1, 10).

* (0.5, 9.5) validates integers 1 through 10 inclusive, but floats only from 0.50 to 9.50 inclusive.
¢ [1, 10] same as (1, 10).

¢ [0.5, 9.5] same as (0.5, 9.5).

Alias of Union[tuple[int, int], tuple[float, float], list[int], list[float]]
SetT

Type for checking whether whether a value is contained in a set.

Examples

* (1, 2, 3) checks whether a given value is equal to the integer 1, 2, or 3.
¢ (True, False) checks whether a given value evaluates to True or False.

o {“A”, “b”, 3} checks whether a given value equals “A”, “b”, or the int 3.

Alias of Iterable[Any]
XT = TypeVar (XT)
Type: TypeVar

Invariant TypeVar.

YT = TypeVar(YT)
Type: TypeVar

Invariant TypeVar.

104 Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

research_client.datavalidator.validation

Validation tools for the datavalidator package.

Classes
ValidationResult Data validation result.
Validator Data validation interface.

class ValidationResult

Bases: object
Data validation result.

Each ValidationResult represents the result of a data validation attempt in a Validator. The ValidationResult can
be queried for details on the data that was validated, whether it passed/failed validation, what the requirements
for validation were, etc. A ValidationResult will evaluate to True if the validation has succeeded and to False if
it has failed.

__init__(success, type_, typedesc, constraint, data, rawdata, casting)

Constructs a new ValidationResult.
Parameters
¢ success (bool) — Whether the validaton has succeeded or failed.
* type — The built-in data type against which validation was carried out.
¢ typedesc (str) — A short user-intelligible description of the data’s type.

e constraint (Union[str, tuple[int, int], tuple[float, float], list[int],
list[float], Iterable[Any], tuple[Iterable[Any], Iterable[Any]],
list[Iterable[Any]], dict[Any, Any], bool, None]) — A constraint data type ap-
propriate to the type of the data, see also the fypes submodule.

» data (Any)— The data that was evaluated (after casting if the forcecasting and/or softcasting
options were active.)

¢ rawdata (Any) — The raw, uncast data as it was passed to the validation method.
¢ casting (bool) — Whether casting was applied to rawdata to yield data.
* type_ (Any)

tohtml ()

Returns HTML formatted explanation of the data validation result.

Return type
str

tojson()
Returns a JSON representation of the data validation result.

Return type
str

tostring()

Returns string explanation of the data validation result.

5.1.

Backend API (Python) 105

LART Research Client, Release 0.4.0

Return type
str
casting
Type: bool

Whether the data in data was cast or not.

Note that this does not necessarily mean that casting was necessary, e.g. an integer that was passed to a
Validator’s vint() method will still have been cast to int() and set the casting attribute to True despite being
of type int before.

constraint

Type: Union[str, tuple[int, int], tuple[float, float], list[int], list[float], Iterable[Any],
tuple[Iterable[Any], Iterable[Any]], list[Iterable[Any]], dict[Any, Any], bool, None]

The constraint, if any, which was used to validate the data.
data

Type: Any

The data itself, possibly cast.

This is the data post-casting if force- or softcasting were used, and can be used to automatically ensure
typecasting or type-narrowing for data storage. For the raw data pre-casting use the raw_data attribute.

rawdata
Type: Any
The raw data, as it was passed to the validator.

This is always the data as it was passed to the Validator, irrespective of whether forcecasting or softcasting
were applied.

success
Type: bool

Whether the data has been succeessfully validated or not.

type_
Type: Any

The internal data type indicated for validation.

typedesc
Type: str

A user-directed description of the type of data being validated.

class Validator

Bases: object
Data validation interface.

A Validator offers a convenient interface for validating a set of data points, of the same or different types. The
Validator will store any failed validation results, can optionally force casting of the data to a specific type, can
be evaluated for success in a boolean expression, and allows for the conditional raising of a DataValidationError
exception if any validation attempts have failed.

A single Validator should only be used once for a closed set of data, as reuse will add the results to the existing
Validator and always evaluate False if it has previously had unsuccessful validation attempts (though under some
circumstances, e.g. the successive building of datasets with late repairs, this may be desirable).

106

Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

__casefolddict (dict)

Return type
dict[TypeVar(XT), TypeVar(YT)]

Parameters
dict_(dict[~XT, ~YT])

__casefoldifstr(x)

Return type
TypeVar(XT)

Parameters
X (XT)

__condcast (type_, data, overwrite=None)
Conditionally casts data to a type.

Attempts to cast data to type_ if, taking into account overwrite, forcecasting applies. Returns data itself if
forcecasting doesn’t apply, and None if forcecasting applies but data cannot be cast to type_.

Return type

Union|[TypeVar(XT), TypeVar(YT), None]
Parameters

e type_(Callable[[...], XT])

e data (YT)

e overwrite (Optional [bool])

__forcecast (overwrite=None)

Return type
bool

Parameters
overwrite (Optional [bool])

__ignorecase(overwrite=None)

Parameters
overwrite (Optional [bool])

__init__(forcecast=False, ignorecase=False)

Constructs a new Validator.
Parameters

» forcecast (bool, default: False) — Whether to force casting of the data arguments to
the validation methods to the indicated type (e.g. str for .validatestring()). This will set
the default behaviour for validation calls, but can be overwritten by passing the named
argument forcecast=True or forcecast=False on individual method calls. For some methods,
e.g. polars and enums, casting is done by passing the matched value rather than typecasting.

» ignorecase (bool, default: False) — Whether to ignore case in string comparisons. If
true, strings will be compared in all uppercase, and regular expression matches will be
passed the IGNORECASE flag. Can be overwritten on each validation call by passing
ignorecase=True/False. Default value: False.

5.1.

Backend API (Python) 107

LART Research Client, Release 0.4.0

__storeresult (result)

Parameters
result (ValidationResult)

__trycall (func, *args, **kwargs)
Returns result of func() if possible, None if an Exception is raised.

Return type
Optional[TypeVar(XT)]

Parameters
o func (Callable[[...], XT])
e args (Any)
e kwargs (dict[Any, Any])

raiseif()

Raises a DataValidationError iff at least one validation has failed.

tohtml Cerrorsonly=False)
Returns a paragraph-by-paragraph HTML representation of validation attempts.

Parameters
errorsonly (bool, default: False) — Whether to include only the errors or all validation
attempts.

tostring(errorsonly=False)

Returns a line-by-line string representation of validation attempts.

Parameters
errorsonly (bool, default: False) — Whether to include only the errors or all validation
attempts.

vbool (typedesc, constraint, data, forcecast=None)
Validates a bool.

Parameters

* typedesc (str)— An end-user intelligible description of the desired data type, e.g. “User
ID” or “postcode”.

* constraint (bool) — A boolean that must be matched, or None to just validate any bool.
¢ data (Any) — The data to be validated.

» forcecast (Optional[bool], default: None) — Optional argument to overwrite the ob-
jects default setting for forced casting of data arguments.

venum (typedesc, constraint, data, forcecast=None, ignorecase=None)

Validates a string against a key:value enumerable.

Checks whether data is either contained in the keys or the values of the enumerable. If forcecasting is used,
it casts to the value that was matched (not the key), or to None if no match was found.

Return type
ValidationResult

Parameters

¢ typedesc (str)

108 Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

e constraint (dict[Any, Any])
e data (Any)

» forcecast (Optional [bool])
e ignorecase (Optional [bool])

vfloat (typedesc, constraint, data, forcecast=None)

Validates a float against an inclusive range of integers or floats.
Parameters

¢ typedesc (str)— An end-user intelligible description of the desired data type, e.g. “User
ID” or “postcode”.

e constraint (Union[tuple[int, int], tuple[float, float], list[int],
list[float]]) — A two member tuple or list of integers where the first element
represents the inclusive lower bound and the second member the inclusive upper bound of
the permissible range of integer values. For example, (3, 5) would successfully validate
the data inputs 3, 4, 5, but fail validation for 2 or 6.

e data (Any) — The data to be validated.

e forcecast (Optional[bool], default: None) — Optional argument to overwrite the ob-
jects default setting for forced casting of data arguments.
vint (typedesc, constraint, data, forcecast=None)
Validates an integer against an inclusive range of integers or floats.

Parameters

 typedesc (str)— An end-user intelligible description of the desired data type, e.g. “User
ID” or “postcode”.

e constraint (Union[tuple[int, int], tuple[float, float], list[int],
list[float]]) — A two member tuple or list of integers where the first element
represents the inclusive lower bound and the second member the inclusive upper bound of
the permissible range of integer values. For example, (3, 5) would successfully validate
the data inputs 3, 4, 5, but fail validation for 2 or 6.

¢ data (Any) — The data to be validated.

» forcecast (Optional[bool], default: None) — Optional argument to overwrite the val-
idator’s default setting for forced casting of data arguments.

Return type
ValidationResult
vpolar (typedesc, constraint, data, forcecast=None, ignorecase=None)
Validates a string against two sets of polar terms.
Checkes whether data is in either of two sets of polar opposition terms. If the forcecast option is active,
membership in the first of the two sets results in casting to True, membership in the second set to False, and

memebership in neither set to None. Validation is successful if data is contained in either of the two sets,
and unsuccessful otherwise.

Parameters

* typedesc (str)— An end-user intelligible description of the desired data type, e.g. “User
ID” or “postcode”.

. Backend API (Python) 109

LART Research Client, Release 0.4.0

e constraint (Union[tuple[Iterable[Any], Iterable[Any]], list[Iterable[Any]]])
— A two member tuple or list of containers of any type (must support membership testing
with in). The first member is a container of acceptable truthy values, the second is a con-
tainer of acceptable falsy values. Note that python built-in boolean types True and False
are always validated as correct.

¢ data (Any) — The data to be validated.

e forcecast (Optional[bool], default: None) — Optional argument to overwrite the ob-
jects default setting for forced casting of data arguments.

* ignorecase (Optional[bool], default: None) — Optional argument to overwrite the val-
idator’s default setting for case sensitivity.

Return type
ValidationResult

vstr (typedesc, constraint, data, forcecast=None, ignorecase=None, flags=0)

Validates a string against a regular expression pattern.
Parameters

* typedesc (str)— An end-user intelligible description of the desired data type, e.g. “User
ID” or “postcode”.

e constraint (str) — A regular expression to match the string against. Important: Note
that the regular expression will implicitly be enclosed by A and Z to match the beginning
and end of the string. These thus need not be specified in the pattern provided.

¢ data (Any) — The data to be validated.

e forcecast (Optional[bool], default: None) — Optional argument to overwrite the val-
idator’s default setting for forced casting of data arguments.

» ignorecase (Optional[bool], default: None) — Optional argument to overwrite the val-
idator’s default setting for case sensitivity.

e flags (Union[RegexFlag, int], default: 0) — Additional regex flags to be passed to

re.match().
Return type
ValidationResult
failed
Type: list[ValidationResult]
forcecast
Type: bool
ignorecase
Type: bool
results

Type: list[ValidationResult]

successful
Type: list[ValidationResult]

110 Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

5.1.9 research_client.Isbq

Package implementing the Language and Social Background Questionnaire.

Functions

expose_to_eel() Expose the LSBQe API to Python Eel.

expose_to_eel ()
Expose the LSBQe API to Python Eel.

Modules
research_client.1lsbq.dataschema Data schema implementing the LSBQe questionnaire.
research_client.1shq.eel Exposes the LSBQe to Python Eel.
research_client.1lsbq.patterns Additional validation patterns for LSBQe.
research_client.1sbhq.versions Version implementations and translations for the LS-

BQe.

research_client.Isbqg.dataschema

Data schema implementing the LSBQe questionnaire.

Classes
Response Class for representing the data of an LSBQe question-

naire response.

class Response

Bases: DataSchema
Class for representing the data of an LSBQe questionnaire response.

__init__(id_=None)
Instantiates a new LSBQe response object.

Parameters
id_ (Optional[str])

5.1. Backend API (Python) 111

LART Research Client, Release 0.4.0

__schema = {'club': {'childhood_friends': {'constraint': (-9223372036854775808,
9223372036854775807), 'required': False, 'type_': <class 'float'>, 'typedesc':
'proportion of language use with friends in childhood'}, 'childhood_grandparents':
{'constraint': (-9223372036854775808, 9223372036854775807), 'required': False,

"type_': <class 'float'>, 'typedesc': 'proportion of language use with
grandparents in childhood'}, 'childhood_neighbours': {'constraint':
(-9223372036854775808, 9223372036854775807), 'required': False, 'type_': <class
'float'>, 'typedesc': 'proportion of language use with neighbours in childhood'},

'childhood_other_relatives': {'constraint': (-9223372036854775808,
9223372036854775807), 'required': False, 'type_': <class 'float'>, 'typedesc':
'proportion of language use with other relatives in childhood'},
'childhood_parents': {'constraint': (-9223372036854775808, 9223372036854775807),
'required': False, 'type_': <class 'float'>, 'typedesc': 'proportion of language
use with parents in childhood'}, 'childhood_siblings': {'constraint':
(-9223372036854775808, 9223372036854775807), 'required': False, 'type_': <class
'float'>, 'typedesc': 'proportion of language use with siblings in childhood'},
'children': {'constraint': (-9223372036854775808, 9223372036854775807),
'required': False, 'type_': <class 'float'>, 'typedesc': 'proportion of language
use with children'}, 'commercial': {'constraint': (-9223372036854775808,
9223372036854775807), 'required': False, 'type_': <class 'float'>, 'typedesc':
'proportion of language use for commercial activities'}, 'emailing': {'constraint':
(-9223372036854775808, 9223372036854775807), 'required': False, 'type_': <class
'float'>, 'typedesc': 'proportion of language use for emailing'}, 'flatmates':
{'constraint': (-9223372036854775808, 9223372036854775807), 'required': False,
"type_': <class 'float'>, 'typedesc': 'proportion of language use with
flat/housemates'}, 'friends': {'constraint': (-9223372036854775808,
9223372036854775807), 'required': False, 'type_': <class 'float'>, 'typedesc':
'proportion of language use with friends'}, 'grandparents': {'constraint':
(-9223372036854775808, 9223372036854775807), 'required': False, 'type_': <class
'float'>, 'typedesc': 'proportion of language use with grandparents'}, 'home':
{'constraint': (-9223372036854775808, 9223372036854775807), 'required': False,
"type_': <class 'float'>, 'typedesc': 'proportion of language use at home'},
'infancy_age': {'constraint': (-9223372036854775808, 9223372036854775807),
"type_': <class 'float'>, 'typedesc': 'proportion of language use in infancy
age'}, 'internet': {'constraint': (-9223372036854775808, 9223372036854775807),
'required': False, 'type_': <class 'float'>, 'typedesc': 'proportion of language
use for internet'}, 'leisure': {'constraint': (-9223372036854775808,
9223372036854775807), 'required': False, 'type_': <class 'float'>, 'typedesc':
'proportion of language use for leisure activities'}, 'nmeighbours': {'constraint':
(-9223372036854775808, 9223372036854775807), 'required': False, 'type_': <class
'float'>, 'typedesc': 'proportion of language use with neighbours'}, 'notes’:
{'constraint': (-9223372036854775808, 9223372036854775807), 'required': False,
"type_': <class 'float'>, 'typedesc': 'proportion of language use for notes'},
'nursery_age': {'constraint': (-9223372036854775808, 9223372036854775807),
"type_': <class 'float'>, 'typedesc': 'proportion of language use in nursery
age'}, 'other_relatives': {'constraint': (-9223372036854775808,
9223372036854775807), 'required': False, 'type_': <class 'float'>, 'typedesc':
'proportion of language use with other relatives'}, 'parents': {'constraint':
(-9223372036854775808, 9223372036854775807), 'required': False, 'type_': <class
'float'>, 'typedesc': ‘'proportion of language use with parents'}, 'partner':
{'constraint': (-9223372036854775808, 9223372036854775807), 'required': False,
"type_': <class 'float'>, 'typedesc': 'proportion of language use with partner'},
'praying': {'constraint': (-9223372036854775808, 9223372036854775807), 'required':
False, 'type_': <class 'float'>, 'typedesc': 'proportion of language use for
praying'}, 'primary_age': {'constraint': (-9223372036854775808,

V368 " ' L 1

80 03 rpede 0

112 language use in primary age'}, 'public': {'constraint': Clapigs$z2ddtDocrypentation
9223372036854775807), 'required': False, 'type_': <class 'float'>, 'typedesc':
'proportion of language use for public affairs'}, 'reading': {'constraint':
(-9223372036854775808, 9223372036854775807), 'required': False, 'type_': <class

LART Research Client, Release 0.4.0

Type: dict

research_client.Isbq.eel

Exposes the LSBQe to Python Eel.

Functions
discard(instid) Discards a Response.
getmissing(instid) Gets a list of missing fields.
getversions() Retrieves the available versions of the LSBQe.
init(data) Initialises a new LSBQe Response.
iscomplete(instid) Checks whether a Response is complete.

load_version(instid, sections)

Load specified sections of an LSBQe version implemen-
tation.

setclub(instid, data)

Adds Community Language Use Behaviour Data to a
Response.

setldb(instid, data)

Adds Language and Dialect Background Data to a Re-
sponse.

setlsb(instid, data)

Adds Language and Social Background Data to a Re-
sponse.

setnotes(instid, data)

Adds Participant and Experimenter Comments Data to a
Response.

store(instid)

Submits a (complete) Response for long-term storage.

_expose (func)

Wraps, renames and exposes a function to eel.

Return type

TypeVar(F, bound= Callable][.. ., Any])

Parameters
func (F)

_getinstance (instid)

Return type
Response

Parameters
instid (str)

_handleexception(exc)

Passes exception to exceptionhandler if defined, otherwise continues raising.

Return type
None

Parameters
exc (Exception)

discard(instid)

Discards a Response.

5.1. Backend API (Python)

113

LART Research Client, Release 0.4.0

Return type
bool

Parameters
instid (str)

getmissing(instid)

Gets a list of missing fields.

Return type
list[str]

Parameters
instid (str)

getversions()

Retrieves the available versions of the LSBQe.

Return type
dict[str, str]

init(data)
Initialises a new LSBQe Response.

Return type
str

Parameters
data (dict[str, Any])

iscomplete (instid)
Checks whether a Response is complete.

Return type
bool

Parameters
instid (str)

load_version(instid, sections)
Load specified sections of an LSBQe version implementation.

Return type
dict[str, dict[str, Any]]

Parameters
e instid (str)
e sections (list[str])

setclub (instid, data)

Adds Community Language Use Behaviour Data to a Response.

Return type
str

Parameters
e instid (str)

e data (dict[str, Any])

114

Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

setldb (instid, data)
Adds Language and Dialect Background Data to a Response.

Return type
str

Parameters
e instid (str)
e data(dict[str, Any])

setlsb (instid, data)
Adds Language and Social Background Data to a Response.

Return type
str

Parameters
e instid (str)
e data (dict[str, str])

setnotes (instid, data)
Adds Participant and Experimenter Comments Data to a Response.

Return type
str

Parameters
e instid (str)
e data (dict[str, Any])

store (instid)

Submits a (complete) Response for long-term storage.

Return type
bool

Parameters
instid (str)

F = TypeVar(F, bound=Callable)
Type: TypeVar

Invariant TypeVar bound to typing.Callablel[..., typing.Any].

research_client.Isbq.patterns

Additional validation patterns for LSBQe.

5.1. Backend API (Python)

115

LART Research Client, Release 0.4.0

research_client.Isbg.versions

Version implementations and translations for the LSBQe.

_get_versions()

Loads all available LSBQe versions into memory.

Return type
dict[str, dict[str, Any]]

5.1.10 research_client.memorygame

Package implementing the Memory Game for the LART Research Client.

Functions

expose_to_eel()

Expose the Memory Game API to Python Eel.

expose_to_eel()
Expose the Memory Game API to Python Eel.

Modules

research_client.memorygame.dataschema

Data structures for the Memory Game.

research_client.memorygame.eel

Exposes the Memory Game to Python Eel.

research_client.memorygame.patterns

Additional validation patterns for Memory Game.

research_client.memorygame.versions

Version implementations and translations for the Mem-
ory Game.

research_client.memorygame.dataschema

Data structures for the Memory Game.

Classes

Response

Class for representing the data of a Memory Game.

class Response
Bases: DataSchema

Class for representing the data of a Memory Game.

__init__(id_=None)

Instantiates a new LSBQ-RML response object.

Parameters
id_ (Optional[str])

116

Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

__schema = {'id': {'constraint':
'[0-9a-fA-F]1{8}-7(?:[0-9a-fA-F]{4}-?){3}[0-9a-fA-F]{12}', 'type_': <class 'str'>,
'typedesc': 'Memory Game Response ID'}, 'meta': {'app_version': {'constraint':
'C2:\\d+ D) \\dH\\w?\\w?\\d*"', "type_': <class 'str'>, 'typedesc': 'Version of app
that last modified the Response'}, 'consent': {'constraint': ({'on', True, 'yes',

'1', 'true'}, {False, 'mo', 'off', '®', 'false'}), 'type_':
typing.Union[tuple[typing.Iterable[typing.Any], typing.Iterable[typing.Any]],
list[typing.Iterable[typing.Any]]], 'typedesc': 'consent confirmation'}, 'date':
{'constraint': '[0-9]1{1,4}\\-(0?[1-9]1]|1[0-2]1)\\-(0?[1-9]1|[12][0-9]1]|3[01]1)",

'type_': <class 'str'>, 'typedesc': ‘'current date'}, 'participant_id':
{'constraint': '[A-Za-z0-9]{3,10}', 'type_': <class 'str'>, 'typedesc':
'Participant ID'}, 'research_location': {'constraint': "[\\w,'
\NVAWDNN-\N-1{1,50}", 'type_': <class 'str'>, 'typedesc': 'location name'},
'researcher_id': {'constraint': '[A-Za-z0-9]{3,10}', "type_': <class 'str'>,
'typedesc': 'Researcher ID'}, 'version_id': {'constraint': '\\w{13,17}', 'type_':
<class 'str'>, 'typedesc': 'Memory Game version identifier'}, 'version_no':
{'constraint': '(?:\\d+.)*\\d+\\w?\\w?\\d*', 'type_': <class 'str'>, 'typedesc':
'Memory Game version number'}}, 'scores': {'score': {'constraint': (0,

9223372036854775807), 'multiple': True, 'type_': <class 'int'>, 'typedesc':
'score'}, 'time': {'constraint': (0, 9223372036854775807), 'multiple': True,
'"type_': <class 'int'>, 'typedesc': ‘'time'}}}

Type: dict

research_client.memorygame.eel

Exposes the Memory Game to Python Eel.

Functions
discard(instid) Discards a Response.
end(instid[, data]) Redirect participant in right sequence after Memory
Game end screen.
getmissing(instid) Gets a list of missing fields.
getversions() Retrieves the available versions of the Memory Game.
init(data) Initialises a new Memory Game Response.
iscomplete(instid) Checks whether a Response is complete.
load_version(instid, sections) Load specified sections of a Memory Game version im-
plementation.
setscores(instid, data) Adds Memory Game Scores to a Response.
store(instid) Submits a (complete) Response for long-term storage.
_expose (func)

Wraps, renames and exposes a function to eel.

Return type
TypeVar(F, bound= Callable][.. ., Any])

Parameters
func (F)

_getinstance (instid)

5.1. Backend API (Python) 117

LART Research Client, Release 0.4.0

Return type
Response

Parameters
instid (str)

_handleexception(exc)

Passes exception to exceptionhandler if defined, otherwise continues raising.

Return type
None

Parameters
exc (Exception)

discard (instid)

Discards a Response.

Return type
bool

Parameters
instid (str)

end (instid, data=None)
Redirect participant in right sequence after Memory Game end screen.

Return type
str

Parameters
e instid (str)
e data (Optional [dict[str, str]])

getmissing(instid)
Gets a list of missing fields.

Return type
list[str]

Parameters
instid (str)

getversions()
Retrieves the available versions of the Memory Game.

Return type
dict[str, str]

init (data)
Initialises a new Memory Game Response.

Return type
str

Parameters
data (dict[str, Any])

iscomplete (instid)
Checks whether a Response is complete.

118 Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

Return type
bool

Parameters
instid (str)

load_version (instid, sections)

Load specified sections of a Memory Game version implementation.

Return type
dict[str, dict[str, Any]]

Parameters
e instid (str)
e sections (list[str])

setscores (instid, data)
Adds Memory Game Scores to a Response.

Return type
str

Parameters
e instid (str)
e data (dict[str, str])

store (instid)
Submits a (complete) Response for long-term storage.

Return type
bool

Parameters
instid (str)

F = TypeVar(F, bound=Callable)
Type: TypeVar
Invariant TypeVar bound to typing.Callablel..., typing.Any].

research_client. nemorygame.patterns

Additional validation patterns for Memory Game.

research_client.memorygame.versions

Version implementations and translations for the Memory Game.

_get_versions()
Loads all available Memory Game versions into memory.

Return type
dict[str, dict[str, Any]]

5.1. Backend API (Python) 119

LART Research Client, Release 0.4.0

5.1.11 research_client.settings

Package implementing the Settings UI for the LART Research Client.

Functions

expose_to_eel() Expose the Settings API to Python Eel.

expose_to_eel()
Expose the Settings API to Python Eel.

Modules

research_client.settings.eel Exposes app configuration to Python Eel as Settings.

research_client.settings.eel

Exposes app configuration to Python Eel as Settings.

Functions
load() Return current settings and config documentation.
store(settings) Validate settings, store in config, and save..
_expose (func)

Wraps, renames and exposes a function to eel.

Return type
TypeVar(F, bound= Callable].. ., Any])

Parameters
func (F)

_handleexception(exc)

Passes exception to exceptionhandler if defined, otherwise continues raising.

Return type
None

Parameters
exc (Exception)

load)

Return current settings and config documentation.

Return type
dict[str, dict[str, Any]]

120 Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

store(settings)

Validate settings, store in config, and save..

Return type
bool

Parameters
settings (dict[str, dict[str, Any]])

F = TypeVar(F, bound=Callable)
Type: TypeVar

Invariant TypeVar bound to typing.Callablel..., typing.Any].

5.1.12 research_client.utils

Utility functions for the LART Research Client app.

Functions
export_backup([filename]) Export app data as a ZIP archive.
manage_settings(command) Manage app settings file.
show_error_dialog([title, message]) Display a graphical error message box even if eel is not

active.

_recursively_overwrite_attr (obj, attr, value)

Return type
bool

Parameters
e obj (object)
e attr (str)
e value (Any)
export_backup (filename=None)
Export app data as a ZIP archive. Prompt for filename if needed.

Return type
bool

Parameters
filename (Optional [Union[Path, str]])
manage_settings (command)
Manage app settings file.
Parameters
command (Union[Literal['update’, 'reset’, 'clear'], str]) — One of the operations to

be carried out on the settings file, or a JSON string with key-value pairs to be merged into the
current settings for the app.

The following commands are available by keyword:

5.1. Backend API (Python) 121

LART Research Client, Release 0.4.0

* update: Load app settings from current file and save them
again. This is useful if a settings file may not include all the key-value pairs that a user
may want to control, for instance after an app update.

* reset: Reset the settings file to the hard-coded app
defaults. This is useful in cases where a settings file may have become corrupted and
where the user wants to start afresh with manually edit the local settings. Effectively,
this is the same as using clear followed by update.

¢ clear: Remove the settings file. On the next start-up, the
app will then use the hard-coded app defaults. This is useful in cases where the user
wants to revert to the apps default settings, without the intent to make manual changes.

Return type
bool

show_error_dialog(title=None, message=None)
Display a graphical error message box even if eel is not active.

Parameters
e title (Optional[str])

* message (Optional [str])

5.2 Frontend API (JavaScript)

Caution: The included JavaScript API documentation is generated semi-automatically with sphinx-js, which
unfortunely doesn’t support the full set of jsdoc directives. It can therefore lack detail and/or be out of sync. If
in doubt we recommend running jsdoc on the individual JavaScript files yourself to generate more detailed API
documentation.

5.2.1 lart.js

L’ART Research Client JavaScript Library.

This library implements interfaces and utility functions designed to simplify common tasks for the ART Research
Client frontend. It’s designed to work together with Python eel and booteel.js.

Namespaces

lart.appLock

App locking state management.

The lart.appLock namespace provides functionality for the management of the app’s global lock state. The lock
state is used to optionally enable or disable certain functionality in the UI, such as the user’s ability to open the right-
click context menu. Generally, the functionality that is made dependent on the lock state should only include that
functionality which may be inadvertently used by a user during a task that could corrupt the responses collected for
that task (e.g. by right clicking they could reload, resubmit, inspect the source logic, etc.).

Attributes

122 Chapter 5. APl Documentation

https://github.com/mozilla/sphinx-js
https://jsdoc.app/

LART Research Client, Release 0.4.0

lart.applock.state
type: string
The app’s current global lock state.

This will be either the string ‘locked’ or the string ‘unlocked’.

You should never set the app’s lock state manually by manipulating this variable. Instead use the { @link

lart.appLock.lock} and { @link lart.appLock.unlock} functions to set the app’s lock state.

lart.appLock.switches
type: Set

Set holding references to HTMLElements that should reflect the app’s global lock state.

Use { @link lart.appLock.registerSwitch} to register HTMLElements that should be switched along with the

app’s global lock state.
Functions

static lart.appLock._contextMenuHandler (event)

Simple event handler to prevent default behaviour when the context menu is triggered.
Arguments
* event (Event) — The context menu triggering event.

static lart.appLock._setSwitchState(element)
Sets the innerHTML of an HTMLElement according to the current switch state.

Arguments
e element (HTMLElement)

static lart.appLock.lock()
Set app’s lock state to locked.

Returns
null —

static lart.appLock.registerSwitch(switchElementOrld, eventType)
Register an HTMLElement to be switched over on changes to the app’s global lock state.

Arguments
e switchElementOrId (HTMLElement |string)
* eventType (string)

Returns
null -

static lart.appLock.toggleState()

Toggle the app’s lock status, irrespective of its current state.

Calling this function will set the app’s global lock state to unlocked if it is currently locked, and it will set it to

locked if it is currently unlocked.

Returns
null -

5.2. Frontend API (JavaScript)

123

mailto:\{@link
mailto:\{@link
mailto:\{@link

LART Research Client, Release 0.4.0

static lart.appLock.unlock()
Set app’s global state to unlocked.

Returns
null -

lart.forms

Form management utilities for the LART Research Client.

This namespace implements an extensive set of utility and helper functions which facilitate the implementation of forms
for the LUART Research Client.

Types

lart. forms.HTMLFormControlElement
type: HTMLInputElement|HTMLSelectElementtHTMLTextAreaElement|RadioNodeListt HTMLMeterElementlHTMLProgressE

A HTML form control element.

See also:

e {@link lart.forms.HTMLFormControlElementTypes}

e {@link lart.forms.isHTMLFormControlElement}?

Attributes

lart. forms.HTMLFormControlElementTypes
type: Set

Set containing all the types recognised as { @link lart.forms. HTMLFormControlElement}.

See also:

e {@link lart.forms.HTMLFormControlElement}

e {@link lart.forms.isHTMLFormControlElement}

lart. forms._repeatBlockCounter
type: object
Counter to keep track of the number of repeats of a block.

This counter is used internally by { @link lart.forms.repeatBlock} to keep track of the number of repetitions for
a repeated block.

lart. forms.conditionMatcherCondition
type: string
Enum of conditions for { @link lart.forms.conditionMatcherFactory}.
Five condition values are supported:
* EQUAL is equivaluent to actualValue == comparisonValue.
* NOT_EQUAL is equivalent to actualValue != comparisonValue.
e SMALLER is equivalent to actualValue < comparisonValue.
* GREATER is equivalent to actualValue > comparisonValue.

* MATCH is equivalent to actualValue.match(comparisonValue), where comparisonValue is a RegExp.

124 Chapter 5. APl Documentation

mailto:\{@link
mailto:\{@link
mailto:\{@link

LART Research Client, Release 0.4.0

Functions

static lart.forms.autoFill (formOrld, delay=500)
Auto-fill a form with data from the URL’s query string/search params.

This function will wait for delay (in ms) before attempting to fill all HTMLInputElement, HTMLSelectElement,
and HTMLTextAreaElement elements attached to the HTMLForm specified by formOrld.

If the query string/search params include a field called ${formld}.submit (where formld is the HTMLFormEle-
ment’s id attribute) and its value is either the string true or I, then following another wait for delay ms an Event
of type click is triggered on the first HTMLElement with a type="submit” attribute attached to the HTMLForm.

Arguments

» formOrId (HTMLFormElement |string) — A HTMLFormElement or a string which iden-
tifies a HTMLFormElement by its id attribute.

* delay (number) — The delay in milliseconds before autoFilling the form, and if applicable,
again before submitting it.

Returns
null -
static lart.forms.conditionMatcherFactory (controls, comparisonValue, condition)
Condition matching function factory.

Generates a function which checks whether the value of one or more form fields (specified by the nodes argument)
evaluates to true or false compared to comparisonValue under condition.

comparisonValue should be a string or number for all condition types except {@linkcode
lart.forms.conditionMatcherCondition. MATCH MATCH}, for which a RegExp object should be supplied.

If the condition is {@linkcode lart.forms.conditionMatcherCondition MATCH MATCH} and the com-
parisonValue is not a RegExp object, it will be implicitly converted (i.e. comparisonValue = Reg-
Exp(comparisonValue);).

For the supported condition types, see { @link lart.forms.conditionMatcherCondition}.

Where controls is a HTMLForm or an iterable of more than a single HTMLElement, the functions is true when-
ever any of the HTMLFormControlElement elements in nodes satisfy the test condition.

Arguments

e controls (HTMLFormElement |[HTMLFormControlElement [Array.
<HTMLFormControlElement>|Set.<HTMLFormControlElement>|HTMLCollection|NodeList)
—The HTMLElement or NodeList of HTMLElement targets for which the generated function
should check the provided condition.

» comparisonValue (String/Number |RegExp) — The value to which the target should be
compared.

» condition (lart.forms.conditionMatcherCondition)— The type of condition to be
applied in comparing the actual value of the node(s) to comparisonValue.

Returns
lart.forms.conditionMatcherFactory~conditionMatcher — Returns a function taking no argu-
ments, which returns frue when the specified condition is met on at least one of the controls, and
false otherwise.

See also:

e {@link lart.forms.conditionMatcherCondition}

5.2. Frontend API (JavaScript) 125

mailto:\{@linkcode
mailto:\{@linkcode
mailto:\{@link

LART Research Client, Release 0.4.0

static lart.forms.conditionalDisable (observedControlName, targetElementOrld, value, condition)

Conditionally disable an element depending on the value of a form control.

Observe and conditionally set the disabled attribute on a HTMLElement depending on the value of a HTML-
FieldControlElement.

Arguments

¢ observedControlName (string) - The name of the { @link
lart.forms. HTMLFormControlElement} whose value shall be observed.

* targetElementOrId (string) — The HTMLElement (or a string with its id attribute)
which shall be conditionally disabled.

* value (string) — The value of the observed field at which the target element shall be dis-
abled.

e condition (lart.forms.conditionMatcherCondition)— The condition used to com-
pare value with the observed field’s value.

Returns
null -

static lart.forms.conditionalDisplay (observedControlName, targetElementOrld, value, condition)

Conditionally display an element depending on the value of a form control.

Observe and conditionally set the display property on an HTMLElement depending on the value of an { @link
lart.forms.HTMLFormControlElement}.

Arguments

» observedControlName (string) - The name of the { @link
lart.forms. HTMLFormControlElement} whose value shall be observed.

* targetElementOrId (string) — The HTMLElement (or a string with its id attribute)
which shall be conditionally displayed.

* value (string) — The value of the observed field at which the target element shall be dis-
played.

e condition (lart.forms.conditionMatcherCondition)— The condition used to com-
pare value with the observed field’s value.

Returns
null -

static lart.forms.conditionalRequire (observedControlName, targetControlName, value, condition)
Conditionally require a form control depending on the value of a different control.

Observe and conditionally set the required attribute on a HTMLFieldControlElement depending on the value of
a different HTMLFieldControlElement.

Arguments

* observedControlName (string) - The name of the { @link
lart.forms. HTMLFormControlElement} whose value shall be observed.

* targetControlName (string) - The name of the { @link
lart.forms. HTMLFormControlElement} which shall be conditionally required.

» value (string) - The value of the observed field at which the target element shall be marked
as required.

126 Chapter 5. APl Documentation

mailto:\{@link
mailto:\{@link
mailto:\{@link
mailto:\{@link
mailto:\{@link

LART Research Client, Release 0.4.0

e condition (lart.forms.conditionMatcherCondition)— The condition used to com-
pare value with the observed field’s value.

Returns
null -

static lart.forms.getControlValue (controlElement)
Obtain the value of any { @link lart.forms. HTMLFormControlElement}.

Arguments

e controlElement (lart. forms.HTMLFormControlElement)— The form control element
for which the value should be optained.

Returns
string|Array.<string>|null — The value of the passed form control element, if any. This will be
a string for control elements with a single value (e.g. text input), an array of strings for those with
multiple values (e.g. multiselect, checkboxes), or null if no value is set for the targeted { @link
lart.forms. HTMLFormControlElement}.

static lart.forms.getElementByGreed(ref, root=document)
Greedily and flexibly try to get an element from the DOM.

This function allows for the flexible retrieval of an element from the DOM. It is primarily meant to be called
inside other functions needing a reference to an element and there facilitates a more flexible calling pattern to
those functions, allowing the element to be referenced either directly as a HTMLElement or RadioNodeList, or
by its id or name attribute.

The procedure followed to find an element is as follows:
* If the passed argument is a HTMLElement or RadioNodeList, return it unchanged.
« If the passed argument is a string:

— If root implements . getElementByld, call root.getElementByld(ref) and return the HTMLElement,
if any.

— If root implements .getElementsByName, call root.getElementsByName(ref). 1f the returned
NodeList contains only HTMLInputElements of type radio which have both the same name and
belong to the same HTMLForm (i.e. that form a radio group), then obtain the relevant RadioN-
odeList and return it. Otherwise, if the NodeList contains only a single HTMLElement, return
it.

— If root implements .querySelector, call root.querySelector(ref) and return the HTMLElement, if
any. Note that this will be the first element inside root which satisfies the ref passed to querySe-
lector.

 If no HTMLElement or RadioNodeList could be found following the above procedure, return null.

The root argument is optional, and can be either a Document root or a HTMLElement node to be used as the
root. Note that HTMLElements don’t implement all the supported query methods and will typically default to
the HTMLElement.querySelector method. Where root is not specified, it defaults to the global document object.
The root is not used where the ref argument already is a HTMLElement or RadioNodeList.

Arguments

e ref (HTMLElement |RadioNodeList [string) — A reference to the HTMLElement which
should be obtained from the DOM. Can be either a JavaScript object directly representing it,
or a string which identifies the element via its id or name attribute, or a string which identifies
the element using the querySelector syntax.

e root (Document [HTMLElement) — A Document or HTMLElement to be used as the root
for querying. Ignored if ref already is a HTMLElement or RadioNodeList.

5.2. Frontend API (JavaScript) 127

mailto:\{@link
mailto:\{@link

LART Research Client, Release 0.4.0

Returns
HTMLElement|RadioNodeListinull — Returns a single HTMLElement, a RadioNodeList, or
null, depending on the first suitable item found in the DOM according to the algorithm described
above.
static lart.forms.getFormControlElements (formOrid)
Get a pre-processed Set of a form’s control elements.
Convenience function, which obtains a HTMLFormElement’s { @link lart.forms. HTMLFormControlElement}s.
In contrast to a HTMLFormControlsCollection, this function returns a Set in which each control is only present

once, and where HTMLInputElements of type radio are represented by a RadioNodeList, rather than the indi-
vidual HTMLInputElements themselves. Additionallly, HTMLFieldSetElements have been removed.

Arguments

» formOrId (HTMLFormElement |string) — The HTMLFormElement (or a string with its id
attribute) for which the HTMLFormControlCollection should be obtained.

Throws
TypeError — Throws a TypeError if formOrld does not refer to a HTMLFormElement.

Returns
Set.<lart.forms. HTMLFormControlElement> — Returns a Set of form control elements rep-
resenting unique instances of form control elements in the targeted form.

static lart.forms.getFormData(formElementOrld)
Assemble all data from a specified form into an object of key-value pairs.

Arguments
e formElementOrId (HTMLFormElement |string) — A form element to extract data from.

Returns
object — - Returns a dictionary-like object of key-value pairs, where key is the name (or id as
fallback) and value the value of each data field within the specified form.

static lart.forms.getRadioNodeList (radioElement)

Get the RadioNodeList associated with a radio input control.
Arguments

e radioElement (HTMLInputElement) — The radio input control for which the RadioN-
odeList should be obtained.

Throws
TypeError — Throws TypeError if the passed element is not a radio element, not attached to a
form, or doesn’t have a name attribute.

Returns
RadioNodeList —

static lart.forms.getSelectValues(selectElement)
Obtain the selected option values of an HTMLSelectElement.

Arguments

e selectElement (HTMLSelectElement |string) — The HTMLSelectElement whose val-
ues shall be optained, or a string with the HTMLSelectElement’s id or name.

Throws
TypeError — Throws a TypeError if elementOrld does not refer to an HTMLSelectElement.

128 Chapter 5. APl Documentation

mailto:\{@link

LART Research Client, Release 0.4.0

Returns
Array.<string> — A list of values of all selected options inside the select element.

static lart. forms.isHTMLFormControlElement (element)
Check whether an element is a { @link lart.forms. HTMLFormControlElement}.

Arguments
* element (object) — The object to be checked for implementation of a relevant prototype.

Returns
boolean — Returns true if the object is a { @link lart.forms. HTMLFormControlElement}, false
otherwise.

See also:

e {@link lart.formsHTMLFormControlElement}

e {@link lart.forms.HTMLFormControlElementTypes}

static lart.forms.isHTMLRadioInputElement (element)
Check whether a HTMLElement is a radio input control.

Arguments
e element (HTMLElement) — The Element to be checked.

Returns
boolean — Returns frue if the element is a HTMLInputElement of type ‘radio’, false otherwise.
static lart.forms.pipeData(event, receiver)
Form submission event callback to validate a form and pipe data to another function.

Implements the functionality of { @link lart.forms.registerPipeline} following the triggering of a submit Event
on the targeted form. See the documentation there for details of the behaviour.

Can also be called directly rather than as an Event callback to simulate the submission of a form. To do this
you should create a new Event (typically of type submit) attached to a HTMLFormElement, and pass this along
with the receiver. Note that doing this without actually triggering the event might bypass other registered event

listeners.
Arguments
* event (Event) — An event (typically ‘submit’) on a form element, e.g. as issued by .addE-
ventListener().
» receiver (function) — A callable to which the form data will be passed as a dictionary.
Returns

boolean — Returns true if the receiver function returns a truthy value, false if validation fails or
the receiver function returns a falsy value.

static lart.forms.registerPipeline (formElementOrld, receiver)
Register a pipeline to submit a form’s data to a JavaScript function instead of an HTTP request.
Registers an event handler on the form specified by formElementOrld so that the data inside the form will be
piped to the function specified by receiver and the further propagation of the submission event will be halted.

Thus, no HTTP request will be issued and the page with the form won’t advance to the specified target or reload;
if this is desired then the receiver of the data should manually direct the user to the new page.

Data will only be piped to the receiver if the form passes client-side validation via the JavaScript validation APL
If you intend to also register a custom function to the submit event of the form to validate (e.g. requireValidation),

5.2. Frontend API (JavaScript) 129

mailto:\{@link
mailto:\{@link
mailto:\{@link

LART Research Client, Release 0.4.0

then you should register the validation function before registering the pipeline, so that a failure to pipe an invalid
form won’t block the validation function callback.

Normally the function as written here will be used to pipe data to a function exposed via Python’s ee/ module
(marked @eel.expose in Python) via a JavaScript wrapper, but it could of course also be used in other scenarios
where it is desirable to simply process the submitted data client-side.

After registering a pipeline callback, roughly the following behaviour ensues:
* A submit EvenListener is registered on the form.

 Following a submit event on the form, the default submittion/event’s default behaviour is prevented and
propagation of the event is stopped.

If the form fails to validate (i.e. if form.checkValidity() == false), then nothing happens.
« If the form validates, the form’s data is obtained via { @lart.forms.getData}.

* receiver is called with this data as the only argument.

Arguments

e formElementOrId (HTMLFormElement|[String) — A HTMLFormElement or its id for
which data is to be piped to receiver.

» receiver (function) — The callback function that should receive the the form data upon
submission and passed validation.

static lart.forms.repeatBlock(elementOrld, pattern)

Note: Deprecated: It’s better to use HTMLTemplateElements for this functionality.

Repeat a HTMLElement and use a regular expression to replace strings inside with a running counter.

Note: This function is now deprecated and should not be used in implementing any new functionality. Instead use
the HTMLTemplateElement together with a slot and then insert copies of the template dynamically as required.
This function will be removed from the library once all currently implemented functionality has been transitioned
to the use of HTML templates.

Arguments

* elementOrId (HTMLElement [string) — A HTMLElement or a string with an id or unique
name attribute to identify a HTMLElement which shall be repeated. Usually this is a block-
level element.

* pattern (RegExp) — A regular expression pattern to match which will be appended with a
counter for each repetition of the block.

Returns
null -

static lart.forms.requireValidation(novalidate)

Require all forms marked .needs-validation to pass client-side validation before submitting.

This function will register an event on all forms with the CSS class .needs-validation which prevents submission
if there are any invalid fields according to the JavaScript Validation API. Forms will be marked by adding the
class .was-validated after the first attempt to submit, which will enable Bootstrap to show custom user feedback
messages.

If the option novalidate is set to true (default false) then the function will automatically set the attribute novalidate
on all the forms it attaches to. This is needed to display Bootstrap form validation feedback instead of the

130

Chapter 5. APl Documentation

mailto:\{@lart.forms.getData

LART Research Client, Release 0.4.0

browser’s built-in feedback, so should usually be specified true where Bootstrap-type user feedback messages
are provided.

Arguments

* novalidate (bool) — Whether to mark affected forms ‘novalidate’ to suppress browsers’
built-in feedback.

Returns
null -

static lart.forms.validateRangelInputs (targetZoneElementOrld)
Add validation to HTMLInputElements of type range.

Attach a validation observer to all HTMLInputElements of type range which are children of the HTMLElement
indicated by rargetZoneElementOrld and which have the required attribute set.

The observed range inputs will pass (client-side) validation only if their slider has been moved at least once,
irrespective of their value.

The method employed to do this involves setting a custom data attribute (data-lart-range-moved) on the HTM-
LInputElement and checking this as part of the elements custom validation. An event listener is attached to the
element to monitor for input and adjust the data attribute accordingly. A MutatioObserver is further attached to
the target zone to monitor for the insertion of any further range controls.

Arguments

* targetZoneElementOrId (HTMLEIlement |String) — A HTMLElement, or a string refer-
ing to an id or name attribute identifying an HTMLElement which is the parent of the range
input controls to be validated.

Returns
null -

lart.tr

On-the-fly client-side translation management for the ’ART Research Client.

This namespace implements functionality to facilitate the on-the-fly translation of user interface elements with strings
loaded on-demand from the backend.

Attributes

lart.tr._activeObservers

type: object.<string, Set.<string>>
List of Node Id’s that are being actively observed for string translation.

lart.tr._callbackQueue
type: object.<string, Array.<function()>>

Queue of callbacks waiting to be called once a certain translation namespace becomes available.

lart.tr._observerQueue

type: object.<string, Set.<string>>

List of Node 1d’s that should be observed for string translation after loading strings for a namespace.

5.2. Frontend API (JavaScript) 131

LART Research Client, Release 0.4.0

lart.tr.missing

type: object.<string, object.<string, string>>
Dictionary-like object of translation IDs and innerHTML content for missing translation items.

You should not normally access the missing translation objects directly, but rather call { @link lart.tr.getMissing }
to obtain the missing translation IDs and associated innerHTML for a specific translation namespace. To add
missing translation objects use { @link lart.tr.addMissing}

See also:

e {@link lart.tr.getMissing}
e {@link lart.tr.addMissing}

lart.tr.strings

type: object.<string, object.<string, object.<string, string>>>
Dictionary-like object holding translation identifiers and translations.

You should not normally access the translation strings directly, but rather call { @link lart.tr.get} to access the
translation strings, as this implements additional logic and will be stable even if the internal structure of the string
object should change in the future.

See also:
e {@link lart.tr.get}

Functions

static lart.tr._activateObservers(ns)

Activate translation observers currently held in the queue.

Cycles through queued Node Id’s for translation observation. If the translation strings have been loaded already
cycles through the nodes to translate them and then registers a MutationObserver on the node to monitor for
changes. If translation strings are not available yet a timeout is set for 100ms, and translation and observer
registration is done once the translation strings have been loaded.

Arguments
* ns (string) — The namespace for which observers should be activated.

Returns
null -

static lart.tr._addStrings(ns, strings)

Add translation strings from array to { @link lart.tr.strings }.
Arguments
* ns (string) — The translation namespace to add the strings to.

* strings (object.<string, string>)- An associative array with translation strings la-
belled by section. Each section contains an associative array with a translation-string id, and a
list of [1] the original untranslated string, and [2] the version-specific translation/adaptation.

Returns
null —

132 Chapter 5. APl Documentation

mailto:\{@link
mailto:\{@link
mailto:\{@link
mailto:\{@link

LART Research Client, Release 0.4.0

static lart.tr._translateElement (ns, element)
Check, and if applicable, substitute a HTMLElement’s innerHTML with version-specific string.

Arguments
* ns (string) — The translation namespace to be used.
* element (HTMLElement) — the HTMLElement to apply translation to.

Returns
null -

static lart.tr._triggerCallbacks()

Trigger waiting callbacks once a translation space has become available.

Returns
null -

static lart.tr.addMissing(ns, trid, innerHTML=""???"")

Add a missing translation IDs and associated innerHTML to the missing trld cache.
Arguments
* ns (string) — The translation namespace to add the missing trld to.
* trId (string) — The translation string identifier.
e innerHTML (string) — The associated innerHTML, default is ‘???’.

Returns
null —

static lart.tr.get(us, trld)
Get a translation string by its translation ID.

Arguments
* ns (string) — The translation namespace to get the translation string from.
» trlId (string) — The translation identifier string.

Returns
string — - The translated string for the identifier, or null if no string for the trld could be found
in ns.

static lart.tr.getMissing(ns)

Get the missing translation IDs and associated innerHTML for missing translation items.

Results are returned as a JSON template, so that they can be copied easily into existing JSON task version
translation files (or indeed used as the basis for a new one).

Arguments
* ns (string) — The translation namespace to get missing strings for.

Returns
string — Returns a JSON template of the missing translation IDs with their innerHTML.

static lart.tr.loadFromEel (ns, eelLoader, loaderParams=[])
Load translation/adaptation strings into a translation namespace.

Arguments

* ns (string) — The translation namespace to be used.

5.2. Frontend API (JavaScript) 133

LART Research Client, Release 0.4.0

» eelLoader (function) — The Python eel function (from eel.js) implementing the transla-
tion loader on the backend.

* loaderParams (Array.<any>) — The parameters that the eelLoader should be called with.

Returns
null -

Examples:

<caption>Loads the LSBQe sections 'meta', 'base' and 'lsb' into the 'lsbq'.
—.namespace:</caption>

const instanceld = lart.utils.searchParams.get('instance');
lart.tr.loadFromEel('lsbq', eel._lsbq_load_version, [instanceld, ['meta', 'base',
~'1sb'11);

static lart.tr.registerCallback(ns, callback, callbackParams)

Register a callback to be triggered when translations for a namespace become available.

This can be useful if certain UI functionality should be delayed until the translations for a specific namespace
(specified by ns) have been loaded from the backend.

If the information depending on the translation is encodable as regular HTML content, it is often preferable to
insert the HTML with a data-*ns*-tr attribute and use the regular { @lart.tr.registerObserver} method instead,
as this will add less overhead where the targeted element or its parent might already be observed for changes.

Arguments
* ns (string) — The translation namespace to monitor.

* callback (function)— The callback function to call once the specified translation names-
pace is available.

» callbackParams (any) — The parameters to pass back to callback when calling it.

Returns
null -

static lart.tr.registerObserver (ns, nodeld)

Register a Node for translation observation for a specific namespace by a Node’s 1d.

This will add an observer running translation on any HTMLElement or Node that is a child of the Node specified
by nodeld. Any child node with a data-*ns*-tr attribute specifying the #rld will be subject to translation from
its namespace where a string with a matching #rld is available.

Observers will automatically delay observation until the relevant namespace has been loaded. There is no need
to (or point in) registering them separately as a callback with { @link lart.tr.registerCallback}.

Arguments
* ns (string) — The namespace that should be observed for translation.
* nodeld (string) — The Id of the Node (and its children) to be observed.

Returns
null -

static lart.tr.translateAttrs(ns, atirs)

Translate an attribute on one or more elements specified by their id.

If namespace ns has not been loaded yet, then translation will automatically be postponed until it is loaded. There
is no need to manually register a callback.

134 Chapter 5. APl Documentation

mailto:\{@lart.tr.registerObserver
mailto:\{@link

LART Research Client, Release 0.4.0

Arguments
* ns (string) — The translation namespace to be used.

* attrs (object.<string, Array.<string, string>>)- An associative array with El-
ement Ids as key, and a two-member list as values, where the first is the attribute name and
the second the translation ID.

Returns
null -

static lart.tr.translateNode (ns, node)
Traverse through a DOM Node and translate all applicable HTMLElements.

Normally this will be called automatically after an observer has been registered for a Node or HTMLElement
with { @link lart.tr.registerObserver}. However, you can call this manually passing a Node or HTMLElement to
trigger a single pass of the string replacement algorithm for the namespace ns on that node and its children.

Arguments
* ns (string) — The translation namespace to be translated on the nodes.
* node (Node |HTMLElement) — A DOM Node to be traversed and translated.

Returns
null —

lart.utils

On-the-fly client-side translation management for the ’ART Research Client.

This namespace implements functionality to facilitate the on-the-fly translation of user interface elements with strings
loaded on-demand from the backend.

Namespaces

lart.utils. UUID | Utilities for working with UUIDs.

Attributes

lart.utils.searchParams
type: URLSearchParams

Shortcut to the URLSearchParams for the current window location.
See also:

e {@link https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams MDN
Documentation for URLSearchParams}

lart.utils.UUID.nilUUID

type: string

Nil UUID as hex-string with separators.
lart.utils.UUID.pattern

type: RegExp

RegEx pattern for identifying valid hex-format UUIDs.

5.2. Frontend API (JavaScript) 135

mailto:\{@link

LART Research Client, Release 0.4.0

lart.utils.UUID.plainNilUUID
type: string
Nil UUID as hex-string without separators.
Functions
static lart.utils.extractLanguageFromVersion(version)

Extract ISO 639-2/3 alpha-3 language code from a version string.

Given an input of the form “XxxYyy_Zzz_CC” where Xxx, Yyy, and Zzz are three-letter ISO 639-2 or ISO 639-
3 alpha-3 language codes, and CC is a two-letter country code, this function will return the string Zzz, which is
used in the ART Research Client to identify the primary display langauage of a test version.

Arguments
» version (string) — UART test version string of the form “XxxYyy_Zzz_CC”.

Returns
string|null — Returns three character alpha-3 language code representing the primary display
languageof a LART test version, or null if the supplied string doesn’t validly encode one.

static lart.utils.UUID.isNilUUID (identifier)
Check whether a UUID in hex format is the Nil UUID.

Arguments
e identifier (string)

Returns
boolean — Returns true if the provided identifier is the Nil UUID (~UUID equivalent of null),
with or without separators, false otherwise..

static lart.utils.UUID.isUUID (identifier)
Check whether a string is a valid UUID in hex format.

Arguments
e identifier (string)

Returns
boolean — Returns true if the provided identifier is a valid hex-formated UUID string (with or
without separators), false otherwise.

lart Root namespace for the lart.js library
lart.appLock | App locking state management
lart.forms Form management

lart.tr On-the-fly UI translation management
lart.utils General utility functions

136 Chapter 5. APl Documentation

LART Research Client, Release 0.4.0

5.2.2 booteel.js

The Booteel Frontend Library.

The Booteel Frontend Library provides functionality to make Python’s eel module work and interact nicely with a
Bootstrap-based frontend. This JavaScript library implements the frontend side of the Booteel functionality, while the
Python module research_client.booteel implements the backend functionality.

Note: Unfortunately, booteel.js has thus far been insufficiently annotated to provide API documentation here. We will
aim to get this ready in due course - in the meantime please refer to the backend booteel API and inspection of the

booteel. js file.

lart.js

The L’ART JavaScript Library

booteel js

The Booteel Frontend Library

5.2. Frontend API (JavaScript)

137

LART Research Client, Release 0.4.0

138 Chapter 5. APl Documentation

CHAPTER
SIX

REFERENCES

139

LART Research Client, Release 0.4.0

140 Chapter 6. References

BIBLIOGRAPHY

[Anderson-Mak-EtAl-2018] Anderson, J.A.E., Mak, L., Keyvani Chahi, A. & Bialystok, E. (2018). The language
and social background questionnaire: Assessing degree of bilingualism in a diverse population. Behaviour
Research Methods 50, 250-263. https://doi.org/10.3758/s13428-017-0867-9

[Lambert-Hodsgon-EtAl-1960] Lambert, W. E., Hodgson, R. C., Gardner, R. C. & Fillenbaum, S. (1960). Evaluational
reactions to spoken languages. The Journal of Abnormal and Social Psychology 60(4), 44.

[Markel-EtAl-1967] Markel, N. N., Eisler, R. M. & Reese, H. W. (1967). Judging personality from dialect. Journal of
Verbal Learning and Verbal Behavior 6(1), 33-35.

[Schoel-Roessel-EtAl-2013] Schoel, C., Roessel, J., Eck, J., Janssen, J., Petrovic, B., Rothe, A., Rudert, S.C. and

Stahlberg, D. (2013). “Attitudes To wards Languages” (AToL) Scale: A Global Instrument. Journal of
Language and Social Psychology, 32(1), 21-45.

[Breit-Tamburelli-EtAl-2023] Breit, F., Tamburelli, M., Gruftydd, 1., Brasca, L. (2023). to be confirmed

141

https://doi.org/10.3758/s13428-017-0867-9

LART Research Client, Release 0.4.0

142 Bibliography

research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.

agt, 69

agt.dataschema, 70
agt.eel, 73
agt.patterns, 75
agt.versions, 75

app, 76

atolc, 76
atolc.patterns, 81
atolc.testPyt, 81
booteel, 83

conclusion, 84
conclusion.eel, 85
conclusion.versions, 86
config, 86

consent, 92
consent.versions, 93
datavalidator, 93
datavalidator.exceptions, 93
datavalidator.patterns, 94
datavalidator.schemas, 94
datavalidator.types, 103
datavalidator.validation, 105
1sbq, 111
1sbg.dataschema, 111
lsbqg.eel, 113
lsbqg.patterns, 115
lsbg.versions, 116
memorygame, 116

memorygame .dataschema, 116
memorygame.eel, 117
memorygame.patterns, 119
memorygame.versions, 119
settings, 120
settings.eel, 120

utils, 121

PYTHON MODULE INDEX

143

LART Research Client, Release 0.4.0

144 Python Module Index

Symbols

__casefolddict () (Validator method), 106
__casefoldifstr() (Validator method), 107
__condcast () (Validator method), 107

__data (DataSchema attribute), 101
__delfieldfactory() (DataSchema method), 97
__delfieldlistfactory() (DataSchema method), 97
__delgroupfactory() (DataSchema method), 97
__forcecast () (Validator method), 107
__functionalize() (DataSchema class method), 98
__getfieldfactory() (DataSchema method), 98
__getfieldlistfactory() (DataSchema method), 98
__getfieldspecs() (DataSchema class method), 98
__getgroupfactory() (DataSchema method), 98
__ignorecase() (Validator method), 107
__index () (DataSchema class method), 98
__init__(Q) (CField method), 95

__init__Q (Config method), 87

__init__Q (DataField method), 96

__init__Q (DataGroup method), 97

__init__Q (DataSchema method), 98

__init__Q (DataValidationError method), 94
__init__Q (Logging method), 89

__init__Q) (Paths method), 90

__init__(Q) (Response method), 70,77, 111, 116
__init__Q (Sequences method), 91

__init__Q (VField method), 102

__init__Q (ValidationResult method), 105
__init__Q (Validator method), 107

__keys (DataSchema attribute), 102
__materialize() (DataSchema class method), 98
__new__() (DataSchema static method), 99
__schema (DataSchema attribute), 102

__schema (Response attribute), 71,77, 111, 116
__schematize() (DataSchema class method), 99
__schematized (DataSchema attribute), 102
__setfieldfactory() (DataSchema method), 99
__setfieldlistfactory() (DataSchema method), 99
__setgroupfactory() (DataSchema method), 99
__storeresult() (Validator method), 107
__trycall () (Validator method), 108

INDEX

_atol_getversions() (in module re-
search_client.atolc), 79

_autovalidate() (DataSchema method), 99

_booteel_handlemodal () (in module re-
search_client.booteel), 83

_booteel_log() (in module research_client.booteel),
83

_booteel_logger_getlevel() (in
search_client.booteel), 83

_customvalidate() (DataSchema method), 100

_expose() (in module research_client.agt.eel), 73

_expose() (in module research_client.conclusion.eel),
85

_expose() (in module research_client.lsbq.eel), 113

_expose() (in module re-
search_client. memorygame.eel), 117

_expose() (in module research_client.settings.eel), 120

_fieldparams (CField attribute), 95

_fieldparams (DataField attribute), 96

_fieldparams (VField attribute), 102

_get_file_path() (Logging method), 89

module re-

_get_versions() (in module re-
search_client.agt.versions), 75
_get_versions() (in module re-
search_client.conclusion.versions), 86
_get_versions() (in module re-
search_client.lsbq.versions), 116
_get_versions() (in module re-

search_client.memorygame.versions), 119
_getfield() (DataSchema method), 100
_getinstance() (in module research_client.agt.eel), 73
_getinstance() (in module research_client.lsbg.eel),

113
_getinstance() (in module re-

search_client.memorygame.eel), 117
_getnexttrial () (in module research_client.agt.eel),

73
_getvalue() (DataSchema method), 100
_handleexception() (in module re-
search_client.agt.eel), 73
_handleexception() (in module re-

search_client.conclusion.eel), 85

145

LART Research Client, Release 0.4.0

_handleexception() (in module re-
search_client.lsbq.eel), 113

_handleexception() (in module re-
search_client.memorygame.eel), 118

_handleexception() (in module re-

search_client.settings.eel), 120
_isna () (DataSchema static method), 100
_recursively_overwrite_attr() (in module re-
search_client.utils), 121
_sequence_options (Sequences attribute), 91
_setvalue() (DataSchema method), 100

A

agt (Sequences attribute), 91

alphabetise() (in module research_client.atolc), 79

appauthor (Config attribute), 88

appname (Config attribute), 88

appversion (Config attribute), 88

arrange_data() (in module research_client.atolc), 79

arrange_order () (in module research_client.atolc), 79

asdict () (DataclassDictMixin method), 88

atol_c_get_items () (in module research_client.atolc),
79

atol_end () (in module research_client.atolc), 79

atol_rating() (in module research_client.app), 76

atol_test() (in module research_client.atolc.testPyt),
81

atolc (Sequences attribute), 91

B

buildquery() (in module research_client.booteel), 83

C

cache (Paths attribute), 91

casting (ValidationResult attribute), 106

CField (class in research_client.datavalidator.schemas),
95

CFieldList (class in re-
search_client.datavalidator.schemas), 95

close() (in module research_client.app), 76

conclusion (Sequences attribute), 91

Config (class in research_client.config), 87

config (in module research_client.config), 91

config (Paths attribute), 91

consent (Sequences attribute), 91

consent_getversions() (in module re-
search_client.consent), 92

Console log message format (configuration value),
47

constraint (ValidationResult attribute), 106

constraint (VField attribute), 102

D

data (Paths attribute), 91

data (ValidationResult attribute), 106
data() (DataSchema method), 100
DataclassDictMixin (class in research_client.config),

88
DataclassDocMixin (class in research_client.config),
88
DataField (class in re-
search_client.datavalidator.schemas), 96
DataFieldList (class in re-
search_client.datavalidator.schemas), 96
DataGroup (class in re-
search_client.datavalidator.schemas), 96
DataSchema (class in re-

search_client.datavalidator.schemas), 97
DataValidationError, 94
Default log level (configuration value), 47
default () (JSONPathEncoder method), 89
default_level (Logging attribute), 90
discard() (in module research_client.agt.eel), 74
discard() (in module research_client.lsbq.eel), 113

discard() (in module re-
search_client.memorygame.eel), 118
displayexception() (in module re-

search_client.booteel), 83

E

end () (in module research_client.agt.eel), 74

end () (in module research_client.conclusion.eel), 85

end () (in module research_client.memorygame.eel), 118

EnumT (in module research_client.datavalidator.types),
103

environment variable

PATH, 61
Path, 64, 65

errors (DataValidationError attribute), 94

export_backup () (in module research_client.utils), 121

export_data_backup() (in module re-
search_client.app), 76

expose_to_eel () (in module research_client.agt), 69

expose_to_eel() (in module re-
search_client.conclusion), 85

expose_to_eel) (in module research_client.lsbq), 111

expose_to_eel() (in module re-
search_client.memorygame), 116

expose_to_eel () (in module research_client.settings),
120

F

F (in module research_client.agt.eel), 75

F (in module research_client.conclusion.eel), 86

F (in module research_client.lsbq.eel), 115

F (in module research_client.memorygame.eel), 119
F (in module research_client.settings.eel), 121
failed (Validator attribute), 110

146

Index

LART Research Client, Release 0.4.0

fetch_file_info() (in
search_client.consent), 92

fetch_location() (in module research_client.atolc),
79

fetch_study_info() (in
search_client.consent), 92

fieldparams () (DataField class method), 96

fieldspecs () (DataField method), 96

File log message format (configuration value), 47

file_format (Logging attribute), 90

flags (VField attribute), 102

forcecast (CField attribute), 95

forcecast (DataSchema attribute), 102

forcecast (Validator attribute), 110

forcecast (VField attribute), 102

fromdict () (DataclassDictMixin class method), 88

G

generate_trial_order() (Response method), 70
get_file_handler () (Logging method), 90
get_id () (in module research_client.atolc), 79
get_stream_handler () (Logging method), 90
get_traits() (in module research_client.agt.eel), 74
getdocs () (DataclassDocMixin method), 89
getfield() (DataGroup method), 97
getmissing() (in module research_client.agt.eel), 74
getmissing() (in module research_client.lsbqg.eel), 114
getmissing() (in module re-
search_client.memorygame.eel), 118
getratings() (Response method), 71
getversions() (in module research_client.agt.eel), 74
getversions() (in module re-
search_client.conclusion.eel), 86
getversions() (in module research_client.lsbq.eel),

module re-

module re-

114
getversions() (in module re-
search_client.memorygame.eel), 118
grab_atol_ratings() (in module re-

search_client.atolc), 79

ignorecase (DataSchema attribute), 102

ignorecase (Validator attribute), 110

ignorecase (VField attribute), 103

init () (in module research_client.agt.eel), 74

init () (in module research_client.conclusion.eel), 86

init () (in module research_client.lsbq.eel), 114

init(Q) (in module research_client.memorygame.eel),
118

init_atol () (in module research_client.atolc), 80

iscomplete() (DataSchema method), 101

iscomplete() (in module research_client.agt.eel), 74

iscomplete() (in module research_client.lsbq.eel), 114

iscomplete() (in module re-
search_client.memorygame.eel), 118
items () (DataSchema method), 101

J

JSONPathEncoder (class in research_client.config), 89

K

key_list() (in module research_client.atolc), 80
keys () (DataSchema method), 101

L

lart.appLlock._contextMenuHandler ()
(lart.appLock static method), 123
appLock._setSwitchState()
static method), 123
appLock.lock() (lart.appLock static method),
123
.appLock.registerSwitch()
static method), 123
appLock.state (lart.appLock attribute), 122
appLock. switches (lart.appLock attribute), 123
appLock.toggleState() (lart.appLock static
method), 123
appLock.unlock() (lart.appLock static method),
123
forms._repeatBlockCounter
attribute), 124
.forms.autoFill () (lart.forms static method),
125

lart. (lart.appLock
lart.
lart (lart.appLock
lart.
lart.
lart.
lart.
lart.

(lart.forms

lart

lart.forms.conditionalDisable() (lart.forms
static method), 125

lart.forms.conditionalDisplay() (lart.forms
static method), 126

lart. forms.conditionalRequire() (lart.forms

static method), 126

forms.conditionMatcherCondition
(lart.forms attribute), 124

.forms.conditionMatcherFactory()
(lart.forms static method), 125

forms.getControlValue() (lart.forms static
method), 127

forms.getElementByGreed() (lart.forms static
method), 127

forms.getFormControlElements() (lart.forms
static method), 128

forms.getFormData()
method), 128

.forms.getRadioNodeList () (lart.forms static
method), 128

forms.getSelectValues() (lart.forms static
method), 128

forms .HTMLFormControlElement
attribute), 124

lart.
lart
lart.
lart.
lart.
lart. (lart.forms static
lart
lart.

lart. (lart.forms

Index

147

LART Research Client, Release 0.4.0

lart. forms.HTMLFormControlElementTypes
(lart.forms attribute), 124

lart. forms.isHTMLFormControlElement ()
(lart.forms static method), 129

lart. forms.isHTMLRadioInputElement ()
(lart.forms static method), 129

lart.forms.pipeData() (lart.forms static method),
129

lart. forms.registerPipeline() (lart.forms static
method), 129

lart. forms.repeatBlock()
method), 130

lart. forms.requireValidation() (lart.forms static
method), 130

(lart.forms static

lart. forms.validateRangeInputs() (lart.forms
static method), 131
lart.tr._activateObservers() (lart.tr static

method), 132
lart.tr._activeObservers (lart.tr attribute), 131
lart.tr._addStrings () (lart.tr static method), 132
lart.tr._callbackQueue (lart.tr attribute), 131
lart.tr._observerQueue (lart.tr attribute), 131

lart.tr._translateElement () (lart.tr static
method), 132
lart.tr._triggerCallbacks() (lart.tr static

method), 133

lart.tr.addMissing () (lart.tr static method), 133

lart.tr.get () (lart.tr static method), 133

lart.tr.getMissing () (lart.tr static method), 133

lart.tr.loadFromEel () (lart.tr static method), 133

lart.tr.missing (lart.tr attribute), 131

lart.tr.registerCallback() (lart.tr static method),
134

lart.tr.registerObserver() (lart.tr static method),
134

lart.tr.strings (lart.tr attribute), 132

lart.tr.translateAttrs() (lart.tr static method),
134

lart.tr.translateNode() (lart.tr static method), 135

lart.utils.extractLanguageFromVersion()
(lart.utils static method), 136

lart.utils.searchParams (lart.utils attribute), 135

lart.utils.UUID.isNilUUID(Q) (lart.utils. UUID
static method), 136

lart.utils.UUID.isUUID() (lart.utils. UUID
method), 136

lart.utils.UUID.nilUUID (lart.utils. UUID attribute),
135

lart.utils.UUID.pattern (lart.utils. UUID attribute),
135

lart.utils.UUID.plainNilUUID (lart.utils. UUID at-
tribute), 135

load () (Config class method), 87

load () (in module research_client.settings.eel), 120

static

load_version() (in module research_client.agt.eel), 74

load_version() (in module re-
search_client.conclusion.eel), 86

load_version() (in module research_client.lsbq.eel),
114

load_version() (in module re-
search_client.memorygame.eel), 119

Logging (class in research_client.config), 89

logging (Config attribute), 88

logs (Paths attribute), 91

1sbhq (Sequences attribute), 91

M

main() (in module research_client.app), 76

manage_settings() (in module research_client.utils),
121

max_files (Logging attribute), 90

Maximum number of log files to keep (configu-
ration value), 47

memorygame (Sequences attribute), 91

message (DataValidationError attribute), 94

missing() (DataSchema method), 101

modal () (in module research_client.booteel), 84

module

research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
.booteel, 83
research_client.
research_client.
research_client.
research_client.
research_client.
research_client.
.datavalidator, 93

.datavalidator.exceptions,

research_client

research_client

research_client
93

research_client
94

research_client

research_client

research_client
105

research_client.
research_client.
research_client.
research_client.
research_client.

agt, 69
agt.dataschema, 70
agt.eel, 73
agt.patterns, 75
agt.versions, 75
app, 76

atolc, 76
atolc.patterns, 81
atolc.testPyt, 81

conclusion, 84
conclusion.eel, 85
conclusion.versions, 86
config, 86

consent, 92
consent.versions, 93

.datavalidator.patterns,

.datavalidator.schemas, 94
.datavalidator.types, 103
.datavalidator.validation,

1shq, 111
1sbqg.dataschema, 111
1sbqg.eel, 113
1sbqg.patterns, 115
1sbqg.versions, 116

148

Index

LART Research Client, Release 0.4.0

research_client.
research_client.

116

research_client.
research_client.
research_client.
research_client.
research_client.
research_client.

N

memorygame, 116
memorygame . dataschema,

memorygame.eel, 117
memorygame.patterns, 119
memorygame.versions, 119
settings, 120
settings.eel, 120

utils, 121

name (DataField attribute), 96

P

PATH, 61
Path, 64, 65

Path for configuration files

value), 48

Path for data files (configuration value), 48

Path for log files (configuration value), 48

Path for temporarily cached data and files
(configuration value), 48

Paths (class in research_client.config), 90

paths (Config attribute),

PatternT (in

88
module

search_client.datavalidator.types), 103

PolarT (in module research_client.datavalidator.types),

103

R

raiseif() (Validator method), 108
randomize () (in module research_client.atolc), 80

RangeT (in module research_client.datavalidator.types),

104

rawdata (ValidationResult attribute), 106

record_consent ()

(in module

(configuration

re-

re-

search_client.consent), 92
required (DataField attribute), 96
research_client.agt

module, 69
research_client.
module, 70
research_client.
module, 73
research_client.
module, 75
research_client.
module, 75
research_client.
module, 76
research_client.
module, 76
research_client.
module, 81

agt.dataschema
agt.eel
agt.patterns
agt.versions
app

atolc

atolc.patterns

research_client.
module, 81
research_client
module, 83
research_client.
module, 84
research_client.
module, 85
research_client.
module, 86
research_client.
module, 86
research_client.
module, 92
research_client.
module, 93
research_client
module, 93
research_client
module, 93
research_client
module, 94
research_client
module, 94
research_client
module, 103
research_client
module, 105
research_client.
module, 111
research_client.
module, 111
research_client.
module, 113
research_client.
module, 115
research_client.
module, 116
research_client
module, 116
research_client
module, 116
research_client
module, 117
research_client
module, 119
research_client
module, 119
research_client.
module, 120
research_client.
module, 120
research_client
module, 121

.memorygame.

atolc.testPyt

.booteel

conclusion
conclusion.eel
conclusion.versions
config

consent

consent.versions

.datavalidator
.datavalidator.exceptions
.datavalidator.patterns
.datavalidator.schemas
.datavalidator.types

.datavalidator.validation

1shq
1sbg.dataschema
1sbhqg.eel
1sbq.patterns

1sbqg.versions

.memorygame

.memorygame . dataschema

eel

.memorygame.patterns

.memorygame.versions

settings

settings.eel

.utils

Index

149

LART Research Client, Release 0.4.0

Response (class in research_client.agt.dataschema), 70
Response (class in research_client.atolc), 77
Response (class in research_client.lsbq.dataschema),

111

Response (class in re-
search_client.memorygame.dataschema),
116

results (Validator attribute), 110

S

save () (Config method), 88

Sequences (class in research_client.config), 91

sequences (Config attribute), 88

set_options() (in module research_client.consent), 93

setclub) (in module research_client.lsbq.eel), 114

setldb () (in module research_client.lsbq.eel), 114

setlocation() (in module research_client.booteel), 84

setloglevel () (in module research_client.booteel), 84

setlsb() (in module research_client.lsbq.eel), 115

setmeta() (Response method), 77

setnotes () (in module research_client.lsbq.eel), 115

setratings () (in module research_client.agt.eel), 75

setratings() (Response method), 71

setscores() (in module
search_client.memorygame.eel), 119

SetT (in module research_client.datavalidator.types), 104

show_error_dialog() (in module re-
search_client.utils), 122

Shutdown delay (configuration value), 46

shutdown () (in module research_client.app), 76

shutdown_delay (Config attribute), 88

store() (in module research_client.agt.eel), 75

store() (in module research_client.lsbq.eel), 115

store() (in module research_client.memorygame.eel),
119

store() (in module research_client.settings.eel), 120

stream_format (Logging attribute), 90

success (ValidationResult attribute), 106

successful (Validator attribute), 110

T

tohtml () (ValidationResult method), 105
tohtml (O (Validator method), 108
tojson() (ValidationResult method), 105
tostring () (ValidationResult method), 105
tostring() (Validator method), 108
type_ (DataField attribute), 96

type_ (ValidationResult attribute), 106
typedesc (DataField attribute), 96
typedesc (ValidationResult attribute), 106

\Y

ValidationResult (class in
search_client.datavalidator.validation), 105

re-

re-

Validator (class in
search_client.datavalidator.validation), 106

validator (DataValidationError attribute), 94

values () (DataSchema method), 101

vbool () (Validator method), 108

venum() (Validator method), 108

versions (in module research_client.atolc), 81

VField (class in research_client.datavalidator.schemas),
102

VFieldList (class in
search_client.datavalidator.schemas), 103

vfloat () (Validator method), 109

vint () (Validator method), 109

vmethod (CField attribute), 95

vpolar () (Validator method), 109

vstr () (Validator method), 110

X

XT (in module research_client.datavalidator.types), 104

Y

YT (in module research_client.datavalidator.types), 104

re-

re-

150

Index

	About the Research Client
	Introduction
	What the L’ART Reserch Client can do
	Reasons to use the Research Client
	Citing the Research Client
	Licensing
	Contributors
	Acknowledgements

	User Guide
	Compatibility and Requirements
	Operating systems
	System requirements
	Required Software
	Tested System Configurations

	Installation
	Installing on Windows 10/11
	Installing on Linux
	Running as a Python package
	Building from source

	Installing on MacOS

	Getting started
	Setting up data collection and obtaining consent
	Collecting Responses
	User input

	Research task: LSBQe
	Loading a generic version of the LSBQe
	Customizing a generic version of the LSBQe
	Excludable Questions
	“Other” Sex
	Minimum required languages
	Reading and Writing:
	Show code-switching

	Research task: AToL
	Loading and customizing a generic version of the AToL

	Research task: AGT
	Loading recordings for the AGT
	Loading a generic version of the AGT
	Customizing a generic version of the AGT

	Locking and unlocking the app
	Exporting data
	Discarding an attempt in progress
	App Settings
	General settings
	Logging settings
	Path and directory settings
	Task sequencing

	Quick Tutorials
	Localisation and Adding Translations
	Creating and Naming your file
	Adding your translation

	Developer Guide
	Contributing
	What do I need to know to help?
	How do I make a contribution?
	Where can I go for help?
	Code of Conduct

	Setting up the development environment
	Installing the pre-requirements
	Get a copy of the source code
	Set up pipenv and install dependencies
	Running the app from the source
	Bonus: Consider using a specialised source code editor

	The manage.py utility
	Building from source
	Additional build dependencies
	PyInstaller
	Inno Setup

	Building the app and the installer
	Building the documentation
	Additional documentation dependencies
	Building the documentation

	Cleaning up after yourself
	Known issues with building

	Roadmap

	API Documentation
	Backend API (Python)
	research_client.agt
	research_client.agt.dataschema
	research_client.agt.eel
	research_client.agt.patterns
	research_client.agt.versions

	research_client.app
	research_client.atolc
	research_client.atolc.patterns
	research_client.atolc.testPyt
	research_client.atolc.versions

	research_client.booteel
	research_client.conclusion
	research_client.conclusion.eel
	research_client.conclusion.versions

	research_client.config
	research_client.consent
	research_client.consent.versions

	research_client.datavalidator
	research_client.datavalidator.exceptions
	research_client.datavalidator.patterns
	research_client.datavalidator.schemas
	research_client.datavalidator.types
	research_client.datavalidator.validation

	research_client.lsbq
	research_client.lsbq.dataschema
	research_client.lsbq.eel
	research_client.lsbq.patterns
	research_client.lsbq.versions

	research_client.memorygame
	research_client.memorygame.dataschema
	research_client.memorygame.eel
	research_client.memorygame.patterns
	research_client.memorygame.versions

	research_client.settings
	research_client.settings.eel

	research_client.utils

	Frontend API (JavaScript)
	lart.js
	lart.appLock
	lart.forms
	lart.tr
	lart.utils

	booteel.js

	References
	Bibliography
	Python Module Index
	Index

